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FOREWORD

This report presents the results of the second six months of
the carry on program for an Advanced Metallic Air Vehicle Structure.
The report period overlaps two phases in the program; two months
of Phase Ib, Preliminary Design and four months of Phase 1I, De-
tail Design and Analysis. The efforts reported herein were spon-
sored by the Air Force Flight Dynamics Laboratory (AFFDL) under
joint management and technical direction of AFFDL and Air Force
Material Laboratory (AFML), Wright Patterson Ajir Force Base, Ohio.

This work was performed under contract F33615-73-C-3001 f
"Advanced Metallic Air Vehicle Structures'" (AMAVS) as part of the
Advanced Metallic Structures Advanced Development Program (AMS
ADP), Program Element Number 63211F, Project Number 486U. John
C. Frishett, Major, USAF, is the ADP Manager while Mr. Frank D.
Boensch FB~A is the Project Engineer for the AMAVS Program. F
H Principal Convair contributors to this report were:
R. C. Bissell Dr. H., 1. McHenry
D. L. Duncan R. E. Miller
C. E. Hart J. M. Shults
E. K. Hensley A. F. Stern 1
{ J. W. Jennings W. O. Sunafrank
C. D. Lantz W. M. Walker
J. L. McDaniel ﬁ

This work was performed during the period 16 December 1972
to 15 June 1973. It was submitted by the authors on 20 June 1973.

This technical report has been reviewed and is approved.
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John C., Frishett, Major, USAF
Program Manager, AMS Program Office
Structures Division
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L ABSTRACT

Refinement of the three designs for a wing carrythrough
structure was continued to the end of Phase Ib. On the basis
of trade studies, materials and component testing and the results
of NDI and manufacturing development work, two of the configura-
tions were chosen for the detail design phase.

Materials testing was substantially completed for the beta
annealed 6A1-4V titanium and testing is underway for the Beta C
titanium and 10 Ni steel. Group I component tests (those per-
formed to verify design concepts) are virtually complete. Tests
to evaluate the welding, brazing and bonding processes are also
well underway.

Design of the test fixture is proceeding with some manu-
facturing effort already started. Detail design and analysis of
the simulated fuselage structure for the test article is also in
work .

Additional trade studies were conducted early in Phase II
and several design changes were incorporated into the two wing
carrythrough structure configurations as a result of these studies.
A Zr0 panel was added to the '"No Box'" Box design. The Fail Safe
F Removable Lug Configuration was redesignated the Fail Safe Integral
Lug Configuration after an integral lower plate-lug arrangement
was selected for detail design.

1ii/1iv
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SECTION 1

INTRODUCTTION

This interim report summarizes the technical accomplishments
from 16 December 1972 to 15 June 1973 for the Advanced Metallic
Air Vehicle Structure Prograu. This work is a part of the Air
Force's Advanced Metallic Structures, Advanced Development Pro-
gram. It was performed under contract to the AFFDL by the Convair
Aerospace Division of General Dynamics at Fort Worth, Texas.

The six months covered by this report include the last por-
tion of Phase 1b, P~ inary Design and the first portion of
Phase 11, Detail D.. . All tasks accomplished in Phase Ib
were reported in AF .-TR-73-40 dated March 1973.

The three designs selected for further design and analysis
in Phase Ib were evaluated at the conclusion of Phase Ib aad two
were selected for continuation in Phase II which started 1 April
1973, These two designs were designated:

Fail Safe Removable Lug (FSRL)
"No-Box' Box (NBB)

Detail design iterations and trade studies in Phase II
accomplished significant changes to both of these designs re-
sulting in many improvements particularly in producibility and
cost,

The brazed lower plate of the FSRL was redesigned to a three
element symmetrical configuration with the lug integral with the
lower plate. This configuration was renamed Fail Safe Integral
Lug (FSIL). This configuration offers many advantages including:
lower weight, lower cost, improved producibility, and increased
predictability as a result of the elimination of the lower lug
to plate splice. New internal bulkheads featuring arched design
at Stations 947 and 977 were added.

The NBB lower lug was redesigned by extending the lug to the
centerline of the WCTS thus serving the functions of lug, lower
plate (partial) and bulkhead rail. The fuel boundary was moved
from the WCTS lower contour to Zg = 0 and a titanium sandwich
lower plate was added. The area from Zyp = 0 to lower contour
was then designed as a fairing. Improved predictability, im-
proved producibility and reduced cost resulted from these revisions.

1




The Development Test Program consisting of Material Testing,
Component Testing, NDI Development and Manufacturing Development
started in the first six months of the program was continued
with most of the material testing and component testing completed.

The design and manufacture of the full scale test fixture
were continued. The design of the various elements of the test
fixture including base, dummv wings, simulated fuselage and upper
forward and aft fuselage extensions 1is nearing completion.
Manufacturing of the test fixture base 1s progressing satisfactorily.

An Open Design Review of the AMAVS Program was held at Fort

Worth on 1-2 May 1973, One hundred and forty representatives from
industry, Air Force, Navy and NASA were in attendance.
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SFCTION TITI

TECHNOLOGY ADVANCEMENT

Recent developments in the fields of structures, materials
and manufacturing are being ipplied to the WCTS design to (demon-
strate that advanced technology can increase the efficiency and
the damage tolerance of aircraft structures. The results to date
are encouraging. Projected efficiency improvements are ahead of
the program goals:

' Cost Savings Weight Savings
Configuration Goal | Projected Goal | Projected
No-Box Box™ 307 38% 5% 10%
FSI. 27% 37% 167% 197

~ - NBB projected costs are shown on page 35.

These highly efficient structures are designed in accordance with
Air Force damage tolerance requirements which virtually preclude
the possibility of structural failure. Specifically, these de-
signs are either fall safe or safe crack growth as defined by
MI1.-8866A, Fail safe designs have limit load capacity with one
element failed plus a residual fatigue life of 1/4 service life.
Safe crack growth structure is designed such that a pre-existing
flaw (0.15 inch in the critical dimension) is stable for one
complete service life even i1if this flaw is located in the worst
possible place with respect to the applied stresses and material
properties., The achievement of efficient damage-tolerant designs
is attributed to technology advancements in the fields of struc-
tures, materials and manufacturing.

The principal means of meeting the efficiency and damage
tolerance goals of the AMAVS program has been through the develop-
ment of innovative design concepts. The principal efficiency
improvements over the baseline are attributed to:

Weight
Cost & Weight

1" " "

Multiple layer damage tolerant lugs.
Elimination of the lower lug-plate splice.
Internal structural arrangement.

Fewer fasteners.

Fewer pleces.

Use of alumrinum in place of titanium in
selected parts,

Cost
113
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Design ideas rarely qualify as technology advancements be-
cause the idea is limited to a particular application. However,
the design strategy - based on technology integration - is worthy
of consideration for the development of future Air Force systems.
The key elements of the strategy are design iteration and develop-
mental risk - both of which are normally minimized in Air Force
production programs. In the AMAVS program, increased span time
has been provided for design iteration; and design constraints
normally applied to production programs to minimize developmental
risk have been removed. Thus, implementation of this strategy .
inte future Air Force programs requires special planning. High
pavoff design concepts need to be developed in parallel with the
production system and implemented into the system upon demonstra-
tion of the payoff.

Specific tochrology advancements under development in the
AMAVS program are discussed in the following subsections. Status
of the developmental efforts and our current assessment of the
merits and shortcomings of the technologlies are reported.

2.1 BRAZED DAMAGE TOLERANT STRUCTURES

Brazing was selected as a joining method for the AMAVS Pro-
gram with the idea that it would provide a joint of moderate
strength which would also serve to retard crack growth from one
side of the joint to the other. A materlals and component test
program has been conducted to test this thesis. The results of
this test program with respect to brazed joint strength and crack
retardation are summarized briefly in the following paragraphs.

2,1.1 Brazing Process

The important parameters affecting the quality of brazed
joints have been identified and are being evaluated. The vacuum
retort method of brazing using Dynabraze B brazing alloy and beta
annealed 6A1-4V titanium plates has proven to be a feasible method
for producing structural components using wide area brazing as a
joining method.

Retort design and atmospheric control in the retort were
two of the more important items which influenced the quality of
the brazed components. Mismatch in adjacent cutter passes in
machining the surfaces to be brazed was found to be very important.

Complexity of the brazed joints and tolerances of mailng pleces ﬂ
were also found to be important factors. J

6




2.1.2 Brazed Joint Strength

High quality brazed joints have demonstrated excellent static
strength for both lap-shear and VQ/1 loadings. Good fatigue
strength has also been demonstrated. The lap-shear static strength

is reduced sharply if the joint is loaded eccentrically and peel
forces are present,

The stress corrosion resistance of brazed lap shear specimens
appcars to be satisfactory. However, several failures have
occurred prior to completion of 1000 hours of sustained loading.
Most of these failures have occurred at 12 ksi sustained shear
stress in specimens taken from one panel that is currently under
metallurgical investigation. The other faiiures have occurred
in specimens with high percentages of void leading to high net
section shear stresses. Work is in progress to define the stress
corrosion threshold and to find the significant metallurgical
variables contributing to the stress corrosion process.

Static and fatigue tests have also been conducted on sub-
standard joints to determine the effect of braze defects on
joint strength., This data will aid decisions concerning accept-
ability of defects in structural joints.

2.1.3 Crack Retardation at Brazed Joints

Crack growth tests have been conducted on small test coupons
and on relatively large components. There is considerable evidence
that slow crack growth is retarded at the brazed joints and that
a crack wiil not progress directly across the braze line. De-
lamination has generally occurred in the vicinity of cracks in
laminated plate structure, further enhancing the crack retardation.

Attempts to achieve a rapidly rvaning crack in the brazed
components proved to be unsuccessful, primarily because of the
excellent fracture toughness of the beta annealed 6Al-4V titanium.
Therefore, no additional information has been obtained concerning
the ability of a brazed joint to arrest a rapidly growing crack.
Initial tests on a brittle material indicated that the brazed

joint will arrest a rapid failure, again accompanied by delamina-
tion of the brazed joint.

In a multiple layer component such as the brazed pivot lug,
cracks in regions of large stress gradients appear to be cenfined
to one layer of material until a fatigue failure is initiated in
adjacent layers. Because of this, the multiple layers do not act

7




independently and a crack cannot be confined to one layer of
material until complete failure of that layer occurs. However,
this same condition will exist if the layers are bolted together,

2.1.4 Conclusions

Results of developmernt and testing already completed indicate
that it is feasible to produce brazed structural components of
sound quality. Experience has shown that simple symmetrical joints
are easier to produce and have greater structural reliability.

Belt sanding of large surfaces to eliminate maci.ined steps improves
the quality of the brazed joints. Successful completion of the
larger component test specimens now in work will give confidence

in the ability to scale-up the brazing techniques to production-
size articles.

Crack growth testing has given confidence in the ability of
brazed bars to serve as crack arrest members for the beta annealed
6A1-4V titanium lower plate. Additional testing will expand the
range of initial flaws considered and provide residual strength
data for full-scale sections of the lower plate.

2.2 BONDED LAMINATED STRUCTURE

The use of adhesive bonded laminated titanium structure to
provide damage tolerance was proposed for several structural
components of the WCTS. It has generally been conceded that the
adhesive joint will serve as a crack arrest medium. Therefore,
most of the emphasis of the development program has been placed
on the bonding process, inspection characteristics and strength
characteristics.

2.2.1 Bonding Process

Adhesive bonding of multi-ply titanium laminated structure
has been very successful. Both mill annealed 6A1-4V and Beta C
titanium sheets of .125 inch thickness have been bonded. A vacuum
deaeration process ha3 proven to be successful in preventing air
entrapment between laminates. Two adhesives, PL717 and AF66, have
produced good quality joints. The PL717 adhesive was judged to
be slightly superior.

Large variations in bond line thicknesses were found to
exist in the bonded laminated structure as a result of waviness
in the sheets. These thickness variations did not affect the

8
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strength adversely. It was discovered, however, that in the .125
inch thick material, large gaps between adjacent sheets can cause
voids if the bonding pressure does not close the gap to the ex-
tent that the volume of available adhesive will fill the gap.

This will occur even if all air has been evacuated from the cavity.

2.2.2 Strength of Bonded Joints

Strength tests were performed on specimens taken from ten-
ply panels as well as the conventional bonded test specimens.
All of the test data to date has proven to be entirely satisfactory. +
Test data is contained in section 3.1.4 of this report.

Static and fatigue tests were performed on bolted joint speci-
mens using both straight shank fasteners and Taper-lok fasteners.
These tests indicate load introduction into the bonded laminated
structure will not present any problems which do not exist in
monolithic structure. Tests also indicate that wachining, drill-
ing and reaming operations do not cause any unusual problems in
laminated structure.

One of che proposed applications of bonded laminated struc-
ture was in shear webs for bulkheads and ribs. Tests were con-
ducted to determine the buckling characteristics for two and three-
ply laminations. The webs of Beta C titanium withstood shear
stresses as high as 96000 psi before buckling. The buckling 1
stress was in agreement with predicted values for monolithic webs
of the same total thickness.

2.2.3 Ipnspection of Bonded Joints

Existing inspection techniques have been judged to be ade-
quate for bonded laminates up to five plies. Some success was
achieved in inspecting the ten-ply panels but it was not felt
that these panels could be reliably iaspected without further
development work,

2.2.4 Conclusions

The bonding process employed is capable of producing high f
| quality laminated panels. Reliable inspection techniques are ‘
available to inspect panels up to five plies in thickness.

The PL717 adhesive will provide good joint strength for the .
titanium alloys. The joints are highly reliable for botbh static

9

o~ — - .

-




T e ——

e e i

and fatigue loads. The adhesive has good peel strength and has
adequate tensile strength to withstand any forces applied by
highly loaded shear panels. In summary, this concept produces
sound structural components and fulfilled all expectations. The
properties of the structure are limited by the properties of the
sheets being bonded together.

2.3 MATERIALS

A comprehensive materials testing program is being conducted
to provide detail characterization of the 'nmew'" material/heat-
treatments being nsed in the WCTS designs:

Beta annealed 6Al-4V titanium plate
10 Ni steel plate
Beta C titanium sheet

Design allowables, fatigue S/N curves and fracture mechanics
properties are being determined for each material,

2.3.1 Beta Annealed 6Al1-4V Titanium

The material tests planned for beta annealed 6Al-4V titanium
are essentially complete. Results to date indicate that the alloy
has excellent fracturc resistance and satisfactory mechanical pro-
perties and fatigue strength., The fracture toughness tests indi-
cate that the material has a typical plane strain fracture tough-
ness (Kic) in excess of 100 ksi Vin at room temperature and -65°F
and in both the RW and WR grain directions. Therefore, the mini-
mum guaranteed Ky of 80 ksi V1in required by the procurement
specification should be readily met., The fatigue crack growth
behavior in both dry air and sump tank water is supericr to that
of other titanium alloys. There should be no problem in qualify-
ing the lower plate and other critical structure to the safe
crack growth requirements of tiz2 AMAVS program. Beta annealed
6A1-4V titanium is virtually immune to stress corrosion cracking.
No crack extension occurred in cest specimens that were loaded to
initial stress intensities in excess of 70 ksi ¥ in and held for
1600 hours. The design allowables are about 57 lower than the
MIL HDBK V values for conventional mill annealed 6A1-4V titanium,
however, this was anticipated on the basis of Boeing SST studies
and 13 of no consequence to the designs. The fatigue allowables
are slightly lower than anticipated. Part of this reduction is
attributed to the use of notched flat plate specimens to generate
fatigue S/N curves. 10
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2.3.2 10 Ni Steel

The material tests planned for 10 Ni steel are nearing com-
pletion. Results to date indicate that the alloy has excellent
fracture resistance and satisfactory mechanical properties and
fatigue strength. Charpy impact tests and the frecture behavior
of the spectrum fatigue crack growth specimens indicate that 10 Ni
steel har the excellent toughness reported by the developers,
the Navy and U.S. Steel. The fatigue crack growth behavior is
comparable to other high strength steels in dry air and the
sensitivity to sump tank water is slight. The design allowables
are essentially the same as those reported for other steels 2t
the 195 ksi strength level. Fatigue testing is still in the
initial stages. Initial results indicate that fatigue strength
at = 1 and 2.4 is approximately equal to that assumed for
design - about 10% lower than D6ac steel (220-240 ksi strength
level), and the fatigue strength at KE = 5 {s significantly lower
than that assumed for design. The reduced fatigue strength at
Ky = 5 will require a stress reduction in the lower lugs.

2.3.3 Beta C Titanium

Material testing on Beta C is approximately half finished.
Results to date indicate that the alloy has excellent design
allowables; but, relative to beta annealed 6A1-4V titanium, it
has poor fracture resistance and fatigue strength. Of particular
concern is the environmental enhanced crack growth observed in
sump tank water. Further tests and metallurgical studies are in
work to charuacterize the extent and nature of the envirommental
sensitivity, The fetigue strength is significantly lower than
beta annealed 6A1-4V titanfum - a factor of 2.5 on life in
spectrum tests with = 2.4, The environmental sensitivity and
reduced fatigue strength, coupled with the relatively low modulus
and high density of Beta C, have led to the replaccment of Beta C
with beta annealed 6A1-4V titanium in the WCTS designs.
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SECTION IT1IT1
TECHNICAL DISCIPLTINES

PROGRESS

3.1 ENGINEERING
3.1.1 Structural Design

The two wing carrythrough structural configurations selected
for detail design during Phase 1I have been modified since the
end of Phase Ib to incorporate various trade study results. The
two configurations, as modified, are described in this sectinn
and are identified as follows:

Fail-fafe Integral Lug (FSIL)

This configuration is distinguished by a brazed three-
element lower plate with integral pivot lugs.

"No-Box" Box (NBB)

This configuration utilizes 10 Ni steel concentrated
in area of the bulkheads as the primary load carrying
material.

These configurations as described in the following paragraphs,
reflect the results of trade studies and component tests con-
ducted during the end of Phase Ib and the early part of Phase II.

3.1.1.1 Fail Safe Integral Lug Configuration

The fail-safe removable lug configuration has been renamed
to reflect the integral lug concept now employed for the lower
plate. An integral upper lug was incorporated during Phase 1Ib.
Trade studies indicate that an integral lug is advantageous from
both weight and cost considerations. This configuration will be
identified in the future as the ''Fail-Safe Integral Lug Configura-
tion." The distinguishing feature of this configuration is still
the brazed titanium lower plate and pivot lug.

13

it




1 . - ——— — . —

Additional trade studies, component test and material test-
ing has resulted in redesign of the brazed lower plate assembly
and the internal bulkheads at Yp947 and YF977. A description of
these redesigned components is discussed in the following pages.
The remaining structural cc .ponents are described in detail in
the Phase It Preliminary Design Summary Report (AFFDL-TR-73-40),
dated March 1973.

Lower Plate Assembly - Major revisions to the lower plate include
an integral pivot lug and a :yumetrically brazed assembly. The
integral lug concept improves fabrication by eliminating the
separate brazed assembly for the pivot lug and eliminating the
critical fit between the lug and plate. The integral lug is

also 4 more welght efficient configuration and improves structural
reliability by deleting the dependence on mechanical fasteners
for transferring the critical lug loads into the box structure.
The symmetrically brazed ¢ ‘ncept permits the assembly to be used

as either a left or right hand part, but requires separate bolt-
on bulkhead attachment angles. Eccentric loading of the brazed
joints is also minimized by the symmetrical design.

The brazed plate assembly shown in Figure 1 (Drawing 603R214)
is constant thickness consisting of three laminae of beta annealed
6Al-4V titanium which extend to include the pivet lug. The one-
piece center lamina is a solid thin plate whereas the one-piece
upper and lower elements are profiled into five crack stopper
bars, inboard of the lug region. The plate assembly, as brazed,
is symmetrical about its horizoutal centerline. Local machining
will be required after brnzing to obtain identity as either a
left or right hand part.

The aft longeron 3plice fitting shown in Figure 2 (Drawing
603R228) consists of two elements of beta annealed 6A1-4V titanium,
double-shear spliced to the brazed assembly. The upper element
extends the full width of the plate and incorporates the vertical
flange for attaching the closure rib. The lower element terminates
after transferring the longeron load into the lower plate. This
splice provides extra thickness to accommodate the baseline
longeron interface requirement, and it reduces the material width
required in the lower plate from 82 to 73 inches. Seventy-two
inch width material has been developed as part of the SST contract.

The forward loangeron splice fitting, also shown in Figure 2
(Drawing 603R228), is integrally machined from 7050 aluminum plate
and single-shear spliced to the lower surface of the brazed lower
plate, The fitting extends the full width of the lower plate and
includes a vertical flange for attaching the support structure for
the lower contoured fairing.

14
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Separate bolt-on lug reinforcements are required to supple-
ment the strength capability of the brazed assembly, and to main-
tain baseline bearing thickness at the pivot hole. The attaching
Taper-lok bolts are located in relatively low stressed areas and
provide a positive control against element delamination.

Reinforcement beams shown in Figure 3 (Drawing 603R240) are
made from 2024 aluminum and located at XF99 to provide compression
stability during negative loadi:g conditions. The beams are
attached to the lower surface of the plate assembly and extend
to contour to provide support to the lower fairing.

Brazed Lower Plate Trade Study - This trade study evaluates the
two additional brazed lower plate designs and compares the results
with the Phase Ib design. The two additional designs were
generated in Phase II to allevaite the brazing problems encountered
with the two Phase Ib 3/8 Scale Lower Plate Component Test Speci-
mens (603FTB005). The brazed surfaces of the first specimen were
unsatisfactory to the extent that it was not suitable for testing.
More rigid controls were employed during the fabrication of the
second specimen to obtain an improved braze. This specimen was
fatigue testing to only 2 ¥ service lives before failure. This
premature failure was attributed to a combination of eccentric
shear loading on the brazed jolats and substandard braze quality.

A new design concept employing three full width, symmetrically
brazed, laminates was simulated in two full scale crack stopper
demonstration test specimens (603FTB051). The test results indi-
cated promise of achieving the necessary damage tolerance and
improved fabrication reliability. As a result, the Phase Ib de-
sign was eliminated from contention and two configurations were
generated utilizing this new design concept. One configuration
consists of a removable lug, the other an integral lug. The
integral lug configuration is shown on drawings 603R214 and 603R228
and was described in the previous paragraph, The bolt-on lug
configuration is depicted in Figure 4 (Drawing 603R215). The
Phase Ib design is described in the summnary report (AFFDL-TR-73-40)
dated March 1973 and is identified by the following drawings:
603R174, 603R147, and 603R140.

The results of the weight and cost trade studies conducted
on the two additional configurations are summarized in the
following table. The costs presented are average unit cost based
on a production quantity of 200 ship sets,
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CONFIGURATION
STUDY ITEM Phase II Phase II
FSRL FSIL
Plate 17634 17574#
WEIGHT Attach Angles 134 140
Lug 1206 837
Long. Ftg. * 155
TOTAL 3103# 2889
Material $107,340 $110,800
COST Fabrication 65,004 42,336
Tooling 10,476 7,036
TOTAL $182,820 €160,179

* Not applicable - Integral with lug.

The detailed weight changes for the Phase I1I. lower plate de-

signg and their attributing factors are summarized below.

CONFIGURATi0ON
1TEM Phase II Phase 11

FSRL FSIL
Net Section Loss in Plate +764 +764
Titanium vs. Steel Long. Ftg. -58 -58
Stress Reduction in Lug +48 +48
Stress Reduction in Plate +96 +96
Integral Lug 0 -214
NET TOTAL +162# -52#

20

The Phase I1 designs are based on equal stress levels which
were reduced up to approximately 20% below the Phase Ib design in
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the more ciitical areas. The weight advantage o the integral
lug configuration offset the penalty incurred by the stress re-
duction and net section loss. '

rabrication is the major cost factor between the integral
and removable lug configurations. The integral lug concept
eliminates the fabrication complexity of mating the pivot lug to
the plate assembly and the added operations required for two
brazed assemblies. The reqirement for one set of brazed tools
is also deleted. Additional fasteners are also required to
accomplish the pivot lug splice.

The overall results of this study indicate adequate justifi-
cation for the selection of the integral lug configuration.

Internal Bulkheads - The internal bulkheads located at YF947 and
Y$977 were redesigned into "arched'" configurations as shown in
Figures 5 and 6 (Drawings 603R238 and 603R239) respectively. The
arched concept permits the use of lower cost aluminum construction
by deleting the strain compatibility requirement with the titanium
lower plate. Fastener reduction 1is also accomplished in the
fatigue critical lower plate by eliminating the attachmeat of
these bulkheads. The internal beam and its necessary attachments
through the lower plate are still requircd, however, al YF947 to H
support the MLG drag brace fitting.

rib and the outboard closure rib, with a mechanical splice at the
Xp84 rib. All panels are adhesive bonded sandwich using 7050
alurinum and zee type edge members. The arched cutouts are
reinforced with 7050 aluminum zee members formed to shape.

Fach bulkhead 1s partial-width, extending between the Xp39 f

Internal Bulkhead Trade Study - This trade study was conducted to

verify the feasibility of replacing the Phase Ib internal bulk-
heads with the arched bulklicads described in the preceeding para-
graph. The primary consideration was the structural integrity of
the bulkheads themsclves and their impact on adjacent structural
components, Computer stress analysis verified the structural
feasibility of aluminum arched bulkheads at Y947 and Yg977 as
described in Section 3.1.2,

The Phase Ib bulkhead designs utilized titenium construction
at Y947 and aluminum at Yp977. Computer stress analysis for the
YF977 bulkhead, however, indicated a need for titanium to satisfy
the strain requirements of the titanium lower plate. The replace-
ment of titanfum with aluminum is an obvious cost reduction and
the reduced surface area of the new design concept indicates ’
an additional reduction,
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3.1.1.2 "No-Box'' Box Configuration

The basic design of the majority of '"No-Box" structural com-
ponents remains unchanged from the Phase Ib design. As a result
of trade studies conducted during Phase Ib, changes were incorporated
into several of these components. The most significant changes
were made to the forward and aft bulkheads which reduced the
material and machining requirements for these items. The lower
cover was also changed from titanium to aluminum with a resulting
material, tooling, and fabrication cost reduction. These studies
and the basic design configuration are contained in the Phase Ib
Preliminary Design Summary Report, AFFDL-TR-73-40, dated March 1973,

The '""No-Box" design concept was changed early in Phase II to
the extent that the structural lower contour panels were eliminated
and replaced with a structural panel at Zg0.0. This configura-
tion change and additional design developments and studies are
described in the following paragraphs. For those components that
remain unchanged, refer to the AFFDL-TR-73-40 report.

Lower Pivot Lug and Zr0.0 Panel - As a result of a trade study
startcd late during Phase Ib which continued into Phase 1II, it was
decided to incorporate a panel at approximately Zp0.0 into the
No-Box configuration. See drawing No. 603R237, Figure 7. This
panel reacts shear and fuel pressure loads and a portion of the
axial load. The major portion of the axial load is now carried
by members integral with the pivot lug that extend inboard to

the centerline of the box adjacent to the fore and aft bulkhead
lower flanges. The lug loads were previously introduced directly
into the bulkhead lower flanges., A single shear splice at the
centerline provides lower plate continuity for the new design.

It would be feasible to eliminate the centerline splice for a
production run by using twenty seven (27) foot long plate material
for the lower 1lug.

The basic lug material 1s finished to 1.50 inches thickness
with doublers added with mechanical fasteners at the pivot pin
hole and at the aft longeron interface to meet the baseline re-
quirenents.

The Zp0.0 panel is integral with the pivot lug inboard to
Xr84. This segment consists of an integrally stiffened relatively
thin machined plate. A beta annealed 6Al-4V titanium machined
plate is utilized for the panel segment between the Xy39 rib and
Xp84 rib, Beta annealed 6Al-4V titanium sandwich construction is
used for the inboard panel from + Xp39 to - Xp39. The titanium

26
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segments of the Zp0.0 panel are attached to the pivot lug exten-
sions with Taper-lok fasteners,

Additional trade study results involving these items are
documented in the following paragraph.

"No-Box' Box Trade Study - The decision was made during Phase II
trade studies to incorporate the Zp0.0 panel for the following
reasons:

1. Better structural continuity is provided by this arrange-
ment. Relative deflections between the lower lug and g
the lower contour panel are eliminated.

2. The need for additional MLG support structure is eliminated,

3. The baseline fuel system can be retained.

4, Fuel tank purging should be simplified,

5. Load distribution in the lug - bulkhead splices may be
improved.

The following table presents the weight and material require-
ment comparison for the two configurations.

ORIGINAL Zp0.0 PANEL
CONFIGURATION CONFIGURATION
MATL WT FINISH WT MATL WT FINISH WT

YF932 BHD
Lower OB Flg 15464 260# 480# 904
Lower 1B Flg 823 178 389 75
YF992 Bhd
Lower OB Flg 3137 424 850 149
Lower 1B Flg 1053 . 190 352 72
Lug 8741 1767 ] 2526
Lug Reinf - - 286
Longn Doubler - - 14360 54
Splice Plate 392 103 41
Splice Plate 406 130 ; 47
YF95.5 Trunnion
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‘ Back Up 716 7 - -
‘ TOTAL 10 NI PARTS | 15814# '3b3§# 164317 13407




ORIGINAL Zr0.0 PANEL
CONFIGURATION CONFIGURATION
MATL WT FINISH WT MATL WT FINISH WT

Additional Parts i
Affected

Lower Cover or 3454 *212#
Feiring
MLG Side load 41 -
Ftg Backup
Zp0 Panel 0-39.5 - 110
TOTAL 3505# 3662#

*Baseline Weight Used

The weight increase of 157 1lbs for the Zp0.0 panel configura-
tion is judged to be acceptable in view of the previously mentioned
advantages. This weight can be reduced approximately 40 1bs if
a welded centerline splice is used or if the splice is eliminated.

The Zp0.0 panel configuration indicates a slightly higher
10 Nickel steel material requirement (617 1lbs). However, this
arrangement provides 2420 1bs of usable cut off stock.

Beta annealed 6Al1-4V titanium was selected for the two in-
board panels at Zp0.0 on the basis of optimized math model
analyses which indicated a fifty pound weight reduction over an
equivalent design using 7050 aluminum. The titanium panel design
also resulted in the 10-Nickel steel lug extension operating at a
more efficient stress level. See Table 1 for cost comparisons,

Preliminary cost estimates for incorporating the Zg0.0 panel
into the 'No-Box' configuration indicates a nominal cost reduction
will be realized over the Phase Ib configuration, The Phase Ib
"No-Box'" configuration unit cost as reported in the AFFDL-TR-73,
Phase Ib Preliminary Design Summary Report - Trade Studies is
$654,832 as compared to the current estimate of $647,204 represents
a cost reduction of $7,627,

A summary of the cost comparisons is contained in Table 1,
Tables 2, 3, and 4 contain a more detailed cost summary of the
principal components affected by this configuration change.
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Tavle 1

'""'NO~-BOX" COST SUMMARY

Phase Ib '""No-Box'" Unit Cost $654,832
o Deletions

603R196 Yp932 BHD $ 79,672

603R195 YF992 BHD 81,583

603R192 LWR PIV LUG 49,510

603R207 BACK-UP FTG 4,508

603R209 BACK-UP FTG 1,025

603R184 LWR PANELS 6,573

Deletion Cost $222,871
® Replacements

603R236 Y932 BHD $ 71,167

603R235 YF992 BHD 70,679

603R237 LWR PIV LUG 65,027

603R237 XF0O PANEL 4,550

603R148 LWR FAIRING 3,820

Replacement Cost $215,243
e COST DELTA -$ 7,628 -$ 7,628
Phase II '"No-Box" Unit Cost $647,204
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Cost estimates for the 603R237 - Xf39 to + Xp39 panel, the
603R148 lower fairing and the 603R209 back-up fitting are based
upon a ratio of the costs from similar existing parts. It should
be noted that an expected additional cost reduction on the MLG
drag brace fitting has not been estimated at this time.

Lower Fairings - Since the Zy0.0 panel reacts the shear and fuel
pressure loads, the lower contour panels shown on drawing 603R184
in the Phase Ib report can re'ert to aerodynamic fairings reacting
only air pressure loads. A design study is currently in work to
revise the 603R148 "A' FSIL fairing design (also shown in the
Phase Ib Report) to adapt these fairings to the No-Box fairing
attach structure,

Forward and Aft Bulkheads - The Y932 and Y992 bulkheads were
redesigned in the area of the lower flange to accommodate the
Zr0.0 panel design concept. Since the axial load is contained
in the pivot lig extensions, the thicknesses of the lower flanges
of both bulkheads were reduced to transfer only the shear load
into the bulkhead webs. The redesigned bulkheads are shown on
Drawing No., 603R235, Figure 8, and Drawing No. 603R236, Figure 9.

Internal Ribs - A design study of the modifications required to
interface the Centerline Rib with the Zg0.0 panel is shown on
drawing No, 603R227, rigure 10.

The 603R175 Xp39 Rib design and 603R203 Xp84 Rib design
shown in the Phase Ib report will be revised by "A" change to
interface these ribs with the 'No-Box' Zy0.0 panel.

MLG Drag Brace Fitting - The 'No-Box'" configuration with the Zp0.0
panel results in a different load distribution from the MLG drag
brace fitting as compared to the prev.ous design concept. As a
result, a redesign of the 603R171 fitting shown in the Phase Ib
Report is currently being studied. The previous fitting design
required two beams at Yp947 and a single beam at Yp962 to react
loads from the fitting and redistribute them to the internal ribs.
The redesign study indicates that only one beam will be required
at Yp947 and the beam at Y962 can be eliminated since the fitting
loads are reacted by the Zp0.0 panel. The study also indicates
that the drag brace fitting can be reduced in size which will
result in an overall reduction in weight and material requirements.
The design layout describing this revision will be published upon
its completion,
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3.1.2 Structural Analysis

During the past six months, stress analysis efforts were
directed toward completion of the Phase Ib preliminary design and
the beginning of the detailed design, Phase I1. Since the major
portion of the work accomplished through the end of Phase Ib is
discussed in detail in Sections 2.2,6.1 and 6.2 of AFFDL-TR-73-40,
this report covers primarily thc period beginning in wmid March
1973 and ending in June 1973. Because the Damage Tolerant Integral
Lug configuration was eliminated from consideration, only the Fail
Safe Integral Lug and No-Box Box configurations are discussed. No
baseline loads changes were made. Loads work consisted essentially
of revisions to Convair panel point loads to reflect current geometry.
For reference, the load conditions are summarized in Table 5.

Table 6 presents a summary of the usable overall math model runs made
to date.

3.1.2.1 Fail Safe Integral Lug Stress Anaiysis

The stress analysis of the Fail Safe Integral Lug configuration
during the latter part of the reporting period consisted of the
following primary tasks:

1. Trade study support for the brazed lower plate and lug
with particular emphasis on the stability of the lowsr
plate under negative bending conditions.

2. Trade study support for the arched internal bulkheads
at YF947 and 977.

3. Finite element analysis of lugs and lug test specimens.
4. Finite element buckling analysis for upper lug and plate.

5. Development of an updated overall math model incorporating
current design features and g¢ .try, i.e. through layer
lower plate, revised sweep actuator attachment, and other

thickness, material, and area changes made during the
design period.

6. Manual and computer aided analyses of miscellaneous
local areas.
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Lower Plate - As a result of brazed joint failures in the 603FTB00S
lower plate specimen, several alternate lower plate designs were
studied. The main emphasis was on the three layer brazed design
with symmetrical stiffeners. In order to obtain additional prelimi-
nary internal loads, TNl run FSRL-4-2 was made as noted in Table 6.

Stability checks for ASKA conditions 4 and 7 were made for
various arrangements. Both of these conditions cause shear and com-
pressive loads in the lower plate with ASKA .4 giving the largest
spanwise compressive loads. For the assumption of simple supports
at the closure rib, Y. = 932, Yp = 992, and X; = 84, it was found
that a reasonable stiEfener width within the desired plate thickness
range could be achieved for ASKA 7. For AS4, however, it appeared
more efficient to provide a fore and aft member at Xp = 99 supported
at Yp = 932 and Y = 992. Stiffener widths for this arrangement were
determined for inclusion in the math model. In addition, the required
dimensions of the fore and aft beam were determined.

The plate between = 84 and Xp = 39 is stabilized by the
drag brace support structure so no requirement for an additional
statilizing member was found necessary there.

From Xp = 39 to Xp = 0, the loads are less than in the out-
board bay and because of partial restraint from the bay which is
stiffened by the drag brace support structure, reasonable stiffener
widths result with no intermediate support.

Preliminary work on a NASTRAN stability model for further check-
ing was begun.

Arched Beam Bulkhead Study - The FSRL TNl math model was modified

to allow a trade study of arched beam internal bulkhead incorporation.
The model was designated FSRL~4-1. The modification was made in a
manner such that two trade studies could be performed:

1. Beams supporting the upper plate at Yp947 and Y977 with
deep gussets or arches at each end.

2, Beams as in 1. with no arches. This arrangement was not
used in an actual run, however.

An isometric view of the revised model is shown in Figure 10.
Figures 11 through 14 depict the revised bulkhead structure in
the FSRL-4-1 model. It should be noted that this model was con-
structed from the FSRL-3-5 model (aluminum upper cover) and no

48







FI' ’ e aa S SR K - hd T TTTTTTIYT T TTTEII T L TR R v mT e o —am—— ——— - . —_ -

=

lblpa L
: I
_,_.m'_-}' 173 >

i
;
l
|
} Figure 11 Yy 947 ARCHED -BEAM BULKHEAD BAR ELEMENTS
]
)
|




b

- N1y

LLRSR M M DS IE T

Figure 12 Yp 947

ARCHED~BEAM

51

BULKHEAD PLATE ELEMENIS




PRUIPRVESY

A ot AR S L DN TN} |

16bs 384

L b

1upBeod

Le

1 pph

burr—ms - y—myr—

Figure 13 YF 977 ARCHED-BEAM RULKHEAD BAR ELEMENTS




(AN SE S DYS L 4 ]

’ 148 s 1t
O & 8

[

Figure 14 Y 977 ARCHED ~BEAM BULKHEAD PLATE ELEMENTS

53




other changes were made so that a direct evaluation of the effects
of the arched-beam concept could be made with respect to the
FSRL-3-5 baseline. The revised bulkhead structure for this model
was constructed from 7050 bent-up sheet stock and was sized to
FSRL-3-5 loads.

The first TNl stress analysis run made for the arched beam
concept utilized load conditions AS2, AS6, AS10, and AS500. AS500
allowed a stiffness evaluatiir of the concept. A review of the
results indicated that the arched bulkhead arrangement was
feasible. 1In general, stress levels were up to 10% higher than
those found in FSRL-3-5 which contained bulkheads at Y_947 and

Yp977 with cutouts. There are at least two factors thgt would ac-
count for the stress increases:

1. Less axial material is available to act with the lower
plate.

2. There is a stronger tendency for single cell torque
box action to occur.

The bulkheads are being redesigned and resized based on loads
data obtained from the analysis for incorporation in the updated
math model.

The energy sum for AS500 deflections combined with AS300
virtual loads was found to be only 0.87% larger for FSRL-4-1
than for FSRL-3-5 so use of arched bulkheads appears to have an
insignificant effect on stiffness. (% box energy of .0916 X 10
in. 1bs. compared to .0909 X 108 in. 1bs.)

603FTB004 3/8 Scale Lug Specimen -~ In a continuing effort to obtain
more accurate lug stress values with finite element analysis, a

study effort was conducted utilizing linear strain computer procedure
TLO and the results from strain surveys of the 603FTB004 3/8" scale
lug test specimen. The objective of this effort was to develop a
simulated pin mechanism to load lug math models and to obtain predict-
ed stresses consistent with known test results. Strain survey
results from the 603FTBO04 specimen were obtained for a load of
200,000# and are shown in Figure 15 (solid line curve). A math
model was then constructed representing the 603FTB004 specimen

as shown in Figure 16 . In place of the thick wall bushing,

a mechanism of bars and triangles was constructed. The purpose of
this arrangement was to load the pin at its centroid and let the

bars transfer the load radially to the triangles. The triangles

in turn load the lug I.D. in & manner consistent with the actual
specimen., The bars were allowed to work only in compression. Those
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expected to work in tension were given the elastic properties of
rubber; those in compression, were made rigid. The bearing tri-
angles were assigned a Young's Modulus of 16 X 106 psl to be
strain compatible with the beta annealed 6Al1-4V titanium lug.

The first attempt (TLO-I) utilized a bearing triangle aspect
ratio (AR) = 1.0. As can be seen from Figure 15 , the predicted
stress at the lug I.D. was 61,000 psi versus an extrapolated value
of 75,000 psi from the strain gage results. It was also learned that
the AR = 1.0 permitted the bear.ng triangle to pick up and transfer
9.67% of the applied load at the critical section A-A, of Figure 16.

A second run (TLO-II) was made by increasing the bearing
triangle AR to approximately 6.0. This increased the predicted stress

level at the lug I.D. to 64,600 psi and dropped the triangle load
transfer to 3.5%.

As a check, using comwentional procedures, the lug was loaded
with a uniform bearing distribution and the transfer mechanism was
rendered ineffective by setting its elastic properties equal to
rubber. This run (TLO-111) resulted in a predicted peak stress -
of 62,600 psi, midway between the first two runs, but resulted in
relatively higher stresses around the lug outside diameter,

Since all three runs (TLO-I through I11) produced relatively
similar results, it was decided that better agreement could be obtained
only through use of a finer grid in the large stress gradient region.
Therefore, as shown in Figure 17, additional nodes and elements
were added to double :‘he coverage in the 1.347 in. thick boss.

This run (TLO-IV) gave an increased peak stress at the lug I1.D.
of 67,100 psi and produced a stress distribution more closely
approximating the results from the strain survey. See Figure 15.

As a final attempt to improve the model results the IV
model was modified by increasing the bearing triangle aspect ratio (AR)
from AR = 6 to AR = 10, This run was designated TLO-V. The stress
variation across the lug was nearly identical to the IV run but
the peak stress at the I.D. increased to 68,000 psi -- reference
Figure 15 . At this time, work on the 603FTB004 model was termi-
nated to allow work to begin on the actual lug model.

Lower Lug Fine Grid Analysis - In order to get a more realistic
stress distribution for the FSRL lower lug, a fine grid TLO model
was set up. An overall view of the simulation is shown in
Figurel8.This model incorporates a simulated wing pivot pin modeled
to duplicate the bending stiffness of the actual pin and ¢ load
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Figure 17 603FTB004 TLO-IV AND TLO-V SETUPS WITH FINER GRID
SIMULATION AROUND LUG I. D.
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Figure 18 FSRL LOWER LUG FINE GRID MODEL
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transfer mechanism as previously described. In addition, an
attempt was made to simulate the actual load paths through the lug-
lower plate splice joint., Figure 19 {illustrates the simulated
load paths used in the model in the splice region. This model was
P put on stardby status pending final results of the 603FTB0O4 study
and final lug-lower plate arrangement selection.

Finite Element Buckling Analysis - Work in this area consisted of a
NASTRAN analysis of a portion of the upper plate and of a study
on the effects of grid size reiuvction.

Upper Plate - A NASTRAN finite element model of a portion of the
machined titanium upper plate was developed. As shown in Figure 20
the reglon selected is bounded by the closure rib, the Xp84 rib,
and the bulkheads at Yp992 and 977, Although use of Convair pro-
cedure AS3 would have been more economical, the stiffeners could
not be simulated with A3S. Thicknesses are shown in Figure 21

The results of this analysis showed an eigenvalue of 5.52 for
ASKA Cond. 2 with the point of maximum deflection at the center of
the center panel. Figure 22 shows a plot of the buckling mode
shape.

Grid Fineness Study - In order to gain additional insight into the
effects of grid size on solution accuracy, example problems were

set up for two ratios of stiffener area to plate thickness for
several grid arrangements(Figure23, Table 7). The basic example
structure is shown in Figure 24 and consists of a simply supported
plate with a central stiffener parallel to the load direction. The #

two plate thicknesses considered were selected so that in one case
(1) the stiffener broke the plete up into two panels and in the
other (case 2) overall buckling including the stiffener was pre-
dicted. The predicted buckling stresses based on NACA TN 1825

are shown as the solid curve in Figure 25 . Results for the
NASTRAN solution four the stiffener critical(case 2) are also
indicated in Figure 25 . A typical case 2 buckled mode shape

is shown in Figure 26 . Work on the stable stiffener case (1)
is in progress. It has been concluded thus far that the plate
simulation can be rather crude without grossly affecting the
eigenvalue when the stiffener is critical. The values for the two
extreme grid sizes are within 10 percent.
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Figure 22 FSRL UPPER COVER BUCKLING MODE SHAPE ASKA 2
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BAR ELEMENTS FOR STIFFENER
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GRID SIZE: MXN QUADRILATERAL ELEMENTS

ELEMENT ARRANGEMENT FOR NASTRAN MODELS OF SIMPLY SUPPORTED
PLATE WITH ONE LONGITUDINAL STIFFENER
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Table 7

NASTRAN BUCKLING ANALYSIS RESULTS
FOR VAR1OUS GRID SIZES

CASE* h tg t. GRID SIZE
IN. IN. 1R. MXN ELEMENTS

1 1,172 0.1365 0.1 4% 6

1 1.172  0.1365 0.1 8 X6

1 1.172  0.1365 0.1 6% 12

1 1.172  0.1365 0.1 8 X 12

2 1.172  0.1365 0.1357 2 X 4

2 1.172  0.1365 0.1357 40X b

2 1.172  0.1365 0.1357 2% 8

2 1.172  0.1365 0.1357 4 X8

*

dr
KSI

87.8
73.2
87.3

80.1

Case 1 represents a plate critical design. Analysis

not complete

*Case 2 represents a stiffener critical design.
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GEOMETRY OF SIMPLY SUPPORTED PLATE
WITH ONE LONGITUDINAL STIFFENER

Figure 24
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Updated Overall Finite Element Model ~ In order to provide a
model which more accurately reflected the design as detail design
began, a major revision to the overall model was begun and sub-
stantially completed during the reporting period. The new model
includes the three-layer lower plate with integral lugs (FSIL),
the arched bulkheads at Yp947 and X 977, the ti./al. upper plate,
revised sweep actuator fitting attathment points, and other
miscellaneous changes required by the updating. The applied
panel point loads were revised for all loading node relocations
involved,

Wing Sween Actuator Fitting - Analysis of the redesigned wing
sweep actuator fitting was begun.

Test ltems - Stress data for component test planning and execution
was provided as required,

Lower Aft Longeron Joint - The currently proposed longeron joint
was reviewed for feasibility and positive results were obtained.

3.1.2.2 NBB Stress Analvsis

The primary stress analysis tasks accomplished for the No-
Box Box configuration were as follows:

1. Study of effects of relative deflections on the lower
plate at Xp = 119 and on the upper plate at XF = 84,

2. Trade study support for the lower plate configuration
selection. (ZF = () versus lower contour)

3. Development of an updated onverall math model incorporating
current design concepts and geometry.

4. Upper lug stability analysis.
S. Manual analysis of local areas.

Relative Deflection Studies - The NBB-1l-1 overall math model
results showed that for condition ASKA 2, the lug deflected out-
board 0.67 inch at YF962, ¥,120.37 while the lower panel deflected
outboard 0.37 inches at the same Xp and Yp location at Zg5.646.
Since the relative deflection would have required flexing of the
closure rib causing possible fatigue life reduction, additional
studies were undertaken to assess the effects,

70




o o D ancrane- -~ 3
Ce > ~—— W ~

The lower plate model shown in Figure 27 and further
described later, was modified by using orthotropic elements
adjacent to the lug, fore and aft bulkheads, and the Xp84 rib.

The stiffnesses of the plate elements were such that they simulated
the load path down to and through a lower contour panel so that

an estimate could be made as to whether this path would carry
enough load to significantly reduce the relative deflection. It
was found that no significant reduction occurred which led to

the conclusion that closure rib flexing would be required for

the contour plate design. Two runs were made, NBB-1& NBB-2.

A review of the upper plate step at Xp84 indicated that
significant relative deflections were also present at that
location. Further review of this area will take place when the
structural arrangement is firm. The capability of using ortho-~
tropic elements to simulate the local stiffness is being builct
into the overall math model.

Lower Plate Material Distribution Studies - Because or relative
deflection problems and other design considerations an extensive
study of the effects of material distribution on a Z 0 lower
plate was conducted so that an efficient and feasible arrangement
could be obtained. A two dimensional TR4 model of the plate was
constructed (Figure 27 )

The TR4 model includes node locations which match existing
nodes in the NBBl-1 overall model at Zg = 0. Loads were determined
for the structure adjacent to and above Zg = 0.0 from the overall
math model run NBBi-1 and used as applied loads on the Zg = 0.0
math model. This method loaded the Zgp = 0.0 math model substanti-
ally the same as if it were integral with the overall model.

Four load conditions, ASKA 2, 6, 9, and 10 were used in each run.

For the initial study of the effect of material distribution
on the maximum stresses in the lower plate and lug, seven problems
were run using combinations of 10 Nickel steel and aluminum of
various thicknesses in zones A, B, and C (Figure 28 ) as shown
in Table 8. The results of problem 17917CA showed that
acceptable stresses were achieved with a relatively even thick-
ness over the plate betweea = 84 and Xp = 115.9 The maximum
principal stresses for P179170A induced by condition ASKA 2 are
shown in Figure /9 for an aluminum plate 0.60 inch thick in
zones A, B, and C of Figure 28.

Next, a 0.3 inch thick steel plate was tried in zones A,
B, and C. The plare stress levels for ASKA 2 were acceptable
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from a material property standpoint as shown in Figure 30
Review of the ASKA 4 condition which causes compressive stresses
) on the lower surface that are approximately -37 percent of the
ASKA 2 stresses (based on wing bending mument ratio), indicated
that stiffeners were required to prevent buckling.

As a means of gaining further insight into the action of the
Zp0 plate, the resizing optien of TR4 (essentially the same as
TN1) was exercised for several material arrangements. This
resizing option uses a fully stressed approach for the members
allowed to vary. No direct weight optimization is included.
The runs made are summarized in Table 9 and discussed in the
paragraphs that follow.

1. NBB-3

For NBB-3, the 10 Ni. steel portion was held constant at
the values determined for the lower plate at contour. (Shaded
area, Figure 31 ) An input gage of 0.10 was used for the 7050
{ al. The program was allowed to analyze and resize the structure
“ six times. (Five iterations).

The final 7050 aluminum gages obtained ave shown in
Figure31l.The solution was close to convergence for the number of
cycles noted since as shown by Figure 32 , the structural weight
had reached a substantially constant value. On the average, this
result was similar to the .60 aluminum requirement previcusly
found satisfactory although the aluminum element stresses in the
latter case were not as uniform since the gage was constant.

2. NBB-4

In order to determine a more efficient arrangement of material
in the lower plate, both the 10 Nickel steel and the 7050 aluminum
were allowed to vary. The initial input gages and area outboard
of X 84 are shown in Figure 33 . As may be seen in Figure 32
the major portion of the resizing occurred in three iterations,
The final gages and areas obtained outboard of Xp84 are shown in
Figure 34 . A typical inplane deflection plot is shown in
Figure 35 for ASKA 2 and in Ficure 36 for ASKA 10, It
should be noted that all physical constraints such as minimum
practical size for some members were not applied since only
qualitative results were being sought. For this problem, the
allowable effectiwve stresses used were 45,000 psi for aluminum
and 145,000 psi for steel. These are less than actusl material
ultimate strength because of fatigue considerations. The result
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Figure 33 NBB-4 TR4 ITERATION, INPUT GAGES AND




< s 4

775 58
.50
<482 708 .
Lbod |
08.5"‘4
] 785 RITA .70 |
1 .83s "5/:1‘

h' -ﬂﬁ' . (f;w l.o%s AU | 792 565 |

\.",,115 \ -
3 QX
"’ A | !
X\ /- 198 O30 el LIy .80 704 £

e ] /
¢ 524 ‘5“ﬂ~‘ﬁj . 364 \“7]
“80 | \ ! ‘
L GIED N . .8g3 | 798
A8+ » 7 ard | SO
%4 . =
45

) K{73
B ieY] . 3b 0‘77 a3
5 (q0] 4132 9\ - ¥ en
443 o %/ 1-92¢ |

KX = THICKNESS, IN.

XX = Aezp, N

Figure 34 NBB-4 TR4 ITERATION, 4 CYCLES Zp0 LOWER
PLATE THICKNESSES AND AREAS




) |*‘cu
. X 7 VISV ~ SNO11DF1430 AOVAYUNS WAMOT ¢¢ 2xndTg
— R . . DT w0 a2
' == kA —m .fh.....\ AL X\_QU: ﬂb

Crnif RT3 KO AN
LSIAON

amd

v’

—§ =
v e
_/’—0
i
4
~

|

|

‘_
il

/
—_— H_._.__.-_._.___.,.L_—.__-_._...
AT

|
|

|
|
|
!
|
I
|
|

{
t
H

Oy S SR Lo R SN LR EC R
i
) .

T LT







—l L
. ———— .

was that the weight was reduced considerably, apparently because
the the load was spread fore and aft over the plate allowing the
lug gages and the bulkhead cap areas at 932 and 992 to be reduced.

3. NBB-5

As 3 gross means of determining whether the weight reductions
are primarlly a result of more load being carried in the aluminum
plate or of lug and bulkhead material removal, another run was
made holding the aluminum constant at the values shown in
Figure 33 with the steel portion allowed to vary during the
resizing. This arrangement approximated the earlier design
where all of the load was carried in the bulkhead caps in the
outboard bay. Figure 32 shows that a considerable portion of
the weight saving of 2 resulted from more efficient use of the
steel since the weight saved for NBB-4 was 831 1lbs while the
weight saved for NBB-5 was 614 1bs.

4. NBB-6

The model was reconfigured to incorporate a four stiffener
concept (15" - 10" - 10" - 10" - 15" spacing) needed tc prevent
compressive buckling in the outboard bay, Xp84 to K 119 (See
Figure 37 ). In addition, realistic minimum areas and gages
for the rails, panels, and lug region were obtained. The
iterative option of TR4 was set at 5 (6 cycles). 1t was found
that the 0.20" steel panel (X;.84 - Xpl19) and rails were adequate
at minimum gages and little iteration occurred. The .250
aluminum panel (X.39 to X.84) increased to .30 to .50 required
gage, The .187 aluminum inboard panel increased to .30" required
gage., The analysis indicated that load was piled into the panel
and removed from the rails. This situation required thick
aluminum panels with unwieldy splices. A configuration appeared
desirable that carried more load in the rails.

S. NBB-7

NBB-7 evolved from the results of NBB-6. In order to relieve
load in the panels and to carry it in the rails, the XF84 to
XEIIQ panel was reconfigured to incorporate a 9 stiffener gridwork
with a .188 to .250 steel panel. In order to use the existing
grid points to expedite the solution, the 9 stiffener areas were
simulated with five stiffeners (9" - 10.5" - 10.5" - 10.5" - 10.5" -
9'" spacing). All other structure was identical to NBB-6 including
all minimum requlrements. The model was allowed to iterate 3
times (4 cycles). See Figure 38 for stiffener arrangement.
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The results were very similar to NBB-6; i.e., high panel
loads and low rail loads. Thick aluminum panels were required
inboard of Xp84 with gages on the order of .30" to .50" .  NBB-7
also indicated the need for a thick aluminum panel inboard of
X.84 which was not desirable from a manufacturing standpoint
(unwieldy splices).

6. NBB-8

As a final attempt at a more efficient structural arrangement, .
NBB-7 was modified by incorporating a titanium panel inboard
of 84 . The titanium panel inboard of Xp84 allowed a 10 to
15 ercent increase in rail loads. In addition, the required
panel gages ranged from .100" to .200'". This result indicated
that a honeycomb panel was feasible from XpO to X§39 and that
plate structure could be utilized from 39 to 4 to tie in
the landing gear drag brace structure. n additlon, this
structural arrangement produced the lightest computer-idealized
structure for a realistic set of minimum sizes, Figure 39

Updated Finite Element Qverall Model - A large portion of the
overall model was resized on the basis of results from the mach
model runs NBB-1-1 and 1-2. Design changes such as substitution
of aluminum for titanium panels were incorporated.

The model was vrevised to eliminate the step between the
upper lug and upper panel at Xp = 84. This change will, with the
use of orthotropic plate elements, make the evaluation of the
magnitude of load transfer across the step possible.

Revision of the model to incorporate a lower plate at
Zgp = 0.0 is in progress. This revision is extensive.

Upper Lug Buckling Stucdy - A finite element model of the upper
lug and cover (inboard to Xp84) was run using Convair buckling
analysis program A3S. This model utilized titanium as the
material and was patterned after the FSRL upper lug design. The
loads used were derived from the '"No Box' Box TNl model for
condition ASKA 10.

A plot of the arrangement of elements for this model is shown
in Figure 40 . The buckling mode shape is delineated in
Figure 41

The buckling ratio for this run was 0.941. This value is
comparable to the buckling ratic (0.947) obtained carlier on the
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10 Nickel steel '"No Box'" Box upper lug model (A3S computer run
177480A). This comparison indicated a possible weight saving
through the redistribution of material to more closely approxi-
mate the FSRL upper lug thickness distribution.

Landing Gear Backup Structure - Loads and stress analysis were
provided during the layout of the additional backup strut for
the MLG side brace fitting which is required if the lower plate
is below ZF = 0.

Test Item - Stress data for component test planning was provided
as required.

Model Data Transfer - Information concerning the '"No Box' Box
finite element model was furnished to AFFDL personnel as an aid
to their model set up. The data furnished included computer
generated geometry plots, a magnetic tape of the NBB-1l overall
model input data, material properties, 1lnad and coordinate axes
information, and miscellaneous drawings.

3.1.2.3 Simulated Fuselage

Math Model - As discussed in AFFDL-TR-73-40, several model
iterations were made to obtain stiffnesses that gave loads applied
to the carrythrough box as close to those from NARSAP as possibie.
The latest results at FMY92 for plates including axial load
capacity are shown in Tables I111-2 and III-3 of AFFDL-TR-73-40.
Although the results are mixed as compared with NARSAP, reasonable
agreement was obtained in the more highly loaded areas.

Subsequent to running the axially loaded plate model, it was
decided; because of extensive calculated plate buckling, offset
plate load paths, and excessive effective widths of simulated
fuselage acting to pick up loads which should have been in the
box covar; that a run should be made with the plates carrying
shear loads only. Such a model was run and the resulits are shown
in Tables 10 and 11 which compare the results with NARSAP
results. As in the case of panels carrying axial load, the re-
sults were mixed with the agreement with NARSAP being better in
some cases and poorer in others. The amount of wing bending
moment carried in the box did increase to nearer NARSAP values.

The model is currently being revised to include area and gage
changes found to be necessary during the stress analysis. 1In
addition, the carrythrough structure in the model is being updated
to reflect the current desfign. The FSIL box 18 to be simulated
first, followed by the NBB.
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Detail Stress Analysis - Analysis of the simulated fuselage

) drawings was started and is in progress. It was found that the
original design would buckle at relatively low load levels so
various stiffener and frame arrangements were studied and increased
gages w2re determined such that buckling would not occur during
fatigue testing. 1In order to provide increased fatigue resistance,
longeron areas were incrensed where necessary to reduce stress
levels. Preliminary analysis of various joints were accomplished.

Model Data Trangfer - A deck of TNl input data cards was furnished .
to AFFDL for running the model on ASOP.

3.1.2.4 Miscellaneous )

Design Review Support (May, 1973)

Papers covering efficient computer usage for preliminary
design and fail safe brazed structure were prepared and presented

] at the design review.

r Computer 1icems

1. Prog:ams TR4 and TNl were wodified to allow tape storage

¢ of joint displacements along with other output data.

! A program was written to allow SC 4020 plots to be made

b from the stored displacement data. Examples of the
plots are shown in Figures 35 and 36

2. An IBM version of NASTRAN became available and indications
are that the system charge time at Convair will be less
than for the CDC version. The buckling studies
previously discussed are being conducted using the j
IBM version. The IBM version has enough capacity to 4
h both restart and retain data for plotting. ‘




3.1.3 Fatigue and Fracture Analysis

The fatigue and fracture analysis requirements for the AMAVS
program are essentially the same as those specified for the base-
line aircraft. The fatigue loads spectrum, the fatigue life
requirements and the fracture analysis requirements are outlined
in AFFDL-TR-73-1, the first é6-month interim report.

During this reporting period, most of the effort was directed
toward reducing the results of the materials and component test
programs to a form suitable for WCTS design. In addition, work
was continued on the development and application of finite element
fracture analysis procedures. Results to date are summarized in
this section.

Significant effort was also directed toward the preparation
of a Fracture Control Plan and a Component Test Plan. These plans
were published as FZM-6068 (1 February 1973) and FZM-6054 (April
1973), respectively and will not be covered herein.

3.1.3.1 Fatigue Analysis - Preliminary fatigue allowables were
determined for each WCIS configuration using the results of the
stress analyses, the fatigue loads spectrum and available S-N
data. The procedures employed and the preliminary results are
presented in AFFDL-TR-73-40, the Phase Ib Preliminary Design
Summary Report. Except for the FSRL lug, these allowables are
still being used. Further analyses will be conducted upon com-
pletion of the stress analysis of the two WCTS configurations
selected for detail design.

A revised fatigue allowable was developed for the FSRL lower
lug using the lug analysis procedure and the S/N data for beta
annealed 6Al-4V titanium reported in AFFDL-TR-73-40. The fatigue
analysis results, shown in Figure 44 , indicate an allowable of
78 ksi, The analysis procedure was validated by results of the
first 3/8 scale lug test, 603FTB004. This specimen had a net
section stress of 73 ksi and developed fatigue cracks after 6
lives of cycling. The second specimen was damage tolerance tested
after 4 lives of fatigue cycling. Since cracks did not develop
during the four lives, only partial validation of the fatigue
analysis was obtained.

3.1.3.2 (Crack Growth Analysig - Crack growth analyses based on
linear elastic fracture mechanics are being conducted to determine
the safe crack growth characteristics of the WCTS in accordance
with the Baseline Fracture Mechanics Design Requirements. The
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analyses are based on constant amplitude fatigue crack growth
data developed for each of the materials selected for primary
structure., Spectrum retardation and environmental effects are
accounted for by use of the Wheeler crack growth model, Reference
1. The empirical parameter, m, needed to tune the Wheeler model
for the case of interest is determined by correlation of spectrum/
environmental test results and analysis results using a series of
m values, The m that leads to the best correlation of test and

analysis is then used to dutermine the crack growth behavior of
the WCTS.

3.1.3.2.1 (Constant Amplitude Fatigue Crack Growth Data - The test i
plan and current status of the constant amplitude fatigue crack

growth tests are shown in Table 12 . The test data for 10 Ni

steel and for beta annealed 6Al-4V titanium have been reduced to

a form suitable for analysis. Testing on Beta C has just started,
therefore, the appropriate equations have not yet been derived.

10 Ni Steel

The 10 Ni steel data have been expressed as Forman equations
having the following form:

da . _C(AK)" 7
dN  (1-R)200- 4K

Where %% = Crack growth rate

AK = Stress intensity range

Y = Environmental factor

R = Load ratio, Min load/max load
C,N = Empirical parameters

The empirical parameters used to fit the test data are summarized
below:

Stress Intensity Range Parameters Environmental Factor,
*ex %ok % A%k %
R AK Range C n DA STW/6 STW/60
R<0.5% AK<1S 4.34 x 1078 3.3 1 1 1
R<0.5% A4K>15 2.94 x 10°% 2.0 1 2 1.5
R>0.5 ALl 4K 2.52 x 1077 2.2 1 2 1.5

*For 0.3 < R<0.,5, let R = 0.3 in Forman Equation.
***Sump tank water, 6 cpm or 60 cpm as shown.
100

**Dry Air
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The analytical curves are shown with the test data in Figures
45 and 46 . Note that for the R = 0,1 tests in sump tank
water, there is a significant reduction (relative to corresponding
tests in dry air) in growth rates at AK levels below about
20ksi VIn. The reduced growth rates are attributed to rust deposits

on the fracture surface limiting the crack opening displacement
range,

Beta Annealed 6Al-4V Titanium *

The beta annealed 6Al-4V titanium data have been expressed as
Paris equations having the following form:

da = c(AK)™
N ( AK)

The analytical curves are siown with the test data in Figures
47 and 48,

3.1.3.2.2 Spectrum - Environmental Crack Growth Tests - The test
plan and current status of the spectrum environmental crack growth
tests are shown in Table 13 . Crack growth analyses based on

the Wheeler model have been conducted to develop an analytical cor-
relation for each set of test data. The experimental and analytical
results are summarized for 10 Ni steel in Figures 49 through

53 and for beta annealed 6A1-4V titanium in Figures 54

through 58.

3.1.3.3 Finite Element Fracture Analysis - It was reported in
Reference 1 thet calculation for Mode 1 fracture had been coded
and checked out., Within this reporting period the following
tasks have been performed.

1. Mode II Analysis

Calculation of crack tip stress intensity factors for Mode
11 fracture has been programmed and checked out for computer
procedure UDl, Therefore, UD1l is capable of calculating Ky and
K1 simultaneously.

Test Problem 1 - Center-Cracked Plate Under Shear Load - A
square sheet with a center crack under uniform shear load along
its periphery was analyzed. Because of double skew-symmetry
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only the upper right quarter needed to be simulated as shown in
Figure 59 . The Kji calculated by UD1 is 113.0 psi VIn while
the solution for the crack in an infinite plate under same
loading is:

Ky = a = 113.7 psi Vin,

The rather close correletion between the finite element
solution and the theoretical solution for the infinite plate
deserves some comments: (1) the coarse grid work used in the
analysis should yield a solution about 5% too high as was ob-
served and reported previously in the Mode I analysis (Reference
2), (2) there is no theoretical finite dimension correction
factor for Ky calculation, however, it is reasonable to presume
that the factor should be slightly greater than one. The effect
from (1) tends to compensate that from (2). Thus the Mode Il
stress intensity factor calculation 18 shown to be satisfactory.

Test Problem 2 - Center-Cracked Plate Under Cormer Load - The
same square plate as in Problem 1 was loaded under antisymmetric
corner loads as shown in Figure 60 and it was analyzed using
computer procedure UD1l. The purpose of this analysis was to
demonstrate the capability of UDl to calculate Kj and Kjy simul-
taneously. There is no theoretical solution to this problem,
yet the results seem in the right range.

2. Structural Design Analysis

Three analysis problems were solved by computer procedure
UD1l. Results and discussion follow,

Problem 1 - Two Parallel Cracks in A Semi-Infinite Plate _
Under Uniform Tension - Two cases were studied to evaluate the
two-crack test specimens used in the spectrum environmental
effects test program. The results are summarized in Figure 61.
With two equal cracks located 5 crack lengths apart along the
load axis the stress intensity factor is magnified by a factor
of 1.05. If one of the cracks is reduced to less than half of
the other crack, the Ky of the smaller crack is slightly less
than that of a single crack of the same length in a semi-infinite
plate due to the "sheltering" effect of the larger crack. The
KI of the larger crack is virtually unchanged from that of a
single crack in a semi-infinite plate.

Problem 2 - Damage Tolerance Test Specimen - Figure 62
shows the general arrangement of the damage tolerance test
specimen, 603FTB033, Four computer runs were made for a = 0.5,
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1.5, 2.5 and 3.0 in, The variation of Ky vs a is shown in Figure
63 . The crack arrest characteristics are similar to those
anticipated fcr a crack in a bay approaching a stiffener in the
FSIL lower plate.

Problem 3 - Idealized Fail-Safe Brazed Lower Plate - A
cracked sheet reinforced with brazed stringers was analyzed,
The structural arrangement is shown in Figure 64 . The
analysis was conducted in order to gain some insight into the
crack arrest behavior of the FSIL lower plate under tensile loads.
The following assumptions were made prior to the analysis:
(1) the bonding between the cracked sheet and the midstringers
remains intact as long as a < 1.0 in, and (2) debonding between
the cracked sheet and the midstringers occurs for a > 1.0 in,
The stress intengity factors were calculated for a = 0.5, 1.0,
2.0, 4.0, 6.0 and 7.5 in. and were plotted in Figure 65 . The
abrupt increase of K1 at a = 1.0 in. is due to delamination of
the midstringer along the braze line.

3. TIriangular and Quadrilateral Plate Elements

The triangular and quadrilateral plate elements have been
introduced into UDl in order to accommodate irregular geometry
and configurations. The triangular element (Figure 66 )
stiffness matrix is based on the following displacement
agssumptions,

ux ® c1x + cy + ¢y
Uy T e4x T esy t ey

The stiffness matrix for a triangular plate element, derived
in Reference 3, is of the following form:

k = ky + kg

where k, represents stiffness due to normal stresses and kg
represents stiffness due to shearing stresses and
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Pigure 66 TRIANGULAR PLATE ELEMENT
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A quadrilateral plate element is subdivided into four
triangular elements by connecting its opposite vertices. The
stiffness matrices of the triangular elements are assembled.
The stiffness matrix of the quadrilateral element is then
obtained by eliminating the mid-node coordinates.
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3.1.4 Materials Engineering

3.1.4.1 Material Selection

The primary materials selected for the use in the AMAVS designs
are 7050 aluminum, Beta C titanium, beta annealed 6Al-4V titanium and
10 Nickel steel. Tentative design allowables have been established
and were included in AFFDL-TR-72-75 and AFFDL-TR~73-1. Based on
tests that have now been completed final design allot ables are
now available for the beta annealed 6Al-4V titanium and are shown
in Table 14

The test plans for the selected materials are included in
the following test plan charts:

603R100-1 "D" 6A1-4V Beta Annealed - Welding
603R100-2 "F" 10 Ni Steel - Welding
603R100-3 "J" Sheet 1 6A1-4V Beta Annealed - Brazed
6J3R100-3 "F" Sheet 2

603R100-4 "F" Beta C Titanium Base Material
603R100-5 "F" 6A1-4V Beta Annealed Base Material
603R100-6 "G" 10 Ni Steel Base Material
603R100-7 "F" Beta C Titanium Bonding

The latest revisions to 603R100-2, -3, and -6 are shown in this
report as Figures 67 , 68 , 69 . The rest ¢f the test plan
charts with their latest revisions are included in AFFDL-TR-73-40.

3.1.4.2 Material Procurement

10 Nickel Steel - All material for the materials test program has
been received. The only procurement now active is the 10 Nickel
steel to support Group II component tests, NDI tests and weld
parameter studies. One piece of steel, size 2%'" X 60" X 128", is
being produced by U, S. Steel Corporation from a slab available
from a Navy order identified as being from Heat No. C52106 Slab
F4619., Test data from three different 1'" thick plates from this
same heat of material are reported in Table 15

Beta Annealed 6A1-4V Titanium - All materials have been received
and acceptance test data reported in Table 16 . The last two

(2) pleces of 1.75" X 46%" X 80" received is reported on the last
two (2) items of acceptance data. This table has been vrevised to
include additional data generated since it was originally published
ir AFFDL-TR-73-1.
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Beta C Titanium - Al! the required materials for the test programs

have been received. . total list of i{l.e materials received is
included in Table 17 . The chemical composition of the three
(3) different heats are as follows:

Weight Percent

Heat No. Eeat No. Heat No.

Element Specification 304324 600393 690507
Carbon .05 .02 .02 .01
Nitrogen .03 011 014 .012
Iron .30 .06 .06 .06
Aluminum 3.0-4.0 3.4 3.4 3.4
Vanadium 7.5-8.5 8.3 8.2 8.1
Chromium 5.5-6-5 5.8 5.9 5.6
Molybdenum 3.5-4.5 4.2 4.1 3.6
Zirconium 3.5.4.5 3.9 3.4 4.3
Oxygen o1 .110 .093 .102
Hvdrogen .02% ¥

All heats are within specification values. Each product of

each was inspected.

The requirements for 90 inches wide Beta C was eliminated
when the DTIL design configuration was eliminated at the end of
Phase Ib. The orders for the material was cancelled and no

furtner evaluation or studies of wide sheet are planned during the
AMAVS program.

Table 17

Beta C Titanium Received

SIZE QUANTITY RMI HT NO

.040 X 38.5 X 113 2 304324

.050 X 38.5 X 101 2 |

.125 X 36 X 99 1

.125 X 37 X 100 1

.125 X 38 X 103 2

.125 X 38 X 97 1

.125 X 38 X 97 1

.125 X 36 X 97 1

125 X 38 X 101 1

.125 X 38 X 97 1

.125 X 38 X 96 1 ¥

V125 X 37 X 97 2 304324
147
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Table 17 (Continued)

SIZE QUANTITY RMI HT NO
.160 X 11 X 21 1 304324
.625 X 25 X 37 1 1
2,500 X 24 X 24 1 304324
.062 X 36 X 92 1 600393
.062 X 36 X 94 1
.100 X 36 X 96 2
.125 X 36 X 96 16
.375 X 36 X 96 1
2.500 X 24 X 24 1 600393
.125 X 36 X 96 2 690507
2.500 X 24 X 24 1 690507

*
Rolled and Pickled to size, all other sheet product rolled,
grounded and pickled

Brazing Alloy - Approximately 51 pounds of Dynabraze B brazing

has been received. The chemical composition and certification

are included in AFFDL-TR-73-40. Additional alloy will be required
for Phase II component tests.

3.1.4.3 Materials Testing

Materials Data Report - Convair Report No. FZM-6148 has been

prepared covering the majority of the test data that has been
generated. This report is the first of four (4) interim reports
and a final report which are to be prepared for this program.
The scope of the test program, the test procedures used, test
equipment description, test specimen configurations and test
data are included.

Significant Data - The first Beta C titanium spectrum crack growth
test was completed. The specimen had two .12 incb long center
cracks; one in sump tank water and one in dry air. The crack in
sump tank water grew to critical size (1.6 inches) in twelve
flights while the crack in dry air did not grow a measurable
amount. The cause of the early failure is being investigated.
Crack propagation tests (da/dN) and stress corrosion tests (KIgec)
have been given priority in the test program. Metallurgical
examinations indicate intergrandular crack growth with possible
signs of stress corrosion. Data on weldments and brazed joints
are included later in thig section.
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3.1.4.4 Brazing Development

A list of brazed specimens with details of the braze cycling
and comments are listed in Table 18 ., Twenty seven (27) braze
assemblies have been cycled since 15 March 1973 without a leaking
retort with no contamination, good wetting, and predictable NDI
results. The 603R100-3 test plan has been maintained with changes
to the plan as noted on the '"J" revision, Figure 68 . One of
the overlapping plank specimen: has been dropped since this design
concept has been abandoned. “he surface finish of the interface
surfaces remains the most critical factor. Steps of over .001
in. result in braze raids. Non contacting surfaces between silver
and titanium between layers of silver 1is susceptible to contami-
nation by whatever atmosphere is present.

The second 603FTB0O05 panel brazed on 2 March 1973, origirally
reported as a good braze, was found to have approximately 107 braze
at the interface. Two layers of braze alloy (.002' and .005") were
used to supplement steps at plank intersections due to slight
variations in plank thicknesses. The .002" silver brazing slloy
foil was tack welded to one layer of planks and the .005 foil was
tack welded to the other layer of planks. A subsequent destruction
test showed the braze alloy to have wet the titanium surfaces
consistently but due to the atmosphere contamination trapped in
the pockets in the center of the panel, the interfaces of the
two (2) layersof silver alloy oxidized and did not wet at the
brazing temperature. Prior and subsequent test plates did not
have pockets ard excellent braze joints resulted. Note the
VQ/I bend shear results of panels No. 2 and 19 in Table 19
It is reasonable to assume some contamination occurred on the
interfaces of the silver braze foil next to the titanium but the
reaction at the braze temperature was sufficient to overcome the
oxidation and produce wetting. The radiograph results did not
agree with the ultrasonic inspection results. The radiograph
indicated a 987, braze based on the presence of silver. The
ultrasonic inspection indicated fair correlation with the
destruction test results. See Figure 70 for microsection of the
BOO5 brazed panel. Note the lack of wetting between the two layers
of silver alloy. The configuration of the panel contributed to
the lack of correlation. Correlation on other panels and brazed
specimens have increased confidence in ultrasonic inspection to the
point that it should be mandatory (in conjunction with X-ray) to
insure reliability of any brazed assembly. In the future, brazed
assemblies with pockets will be tooled to insure the removal of
atmosphere from all portions of the assembly.
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Table 19

BRAZED PANEL (603R100-3)
VQ/1 SHEAR DATA*

SPECIMEN { SPECI JMENSIONS | SUPPORT | LOAD SHEAR BZ JOINT
NO. L W T SPACING | (LBS) (PSI) FAILURE COMMENT
BZ16-J1C| 2.5 | .5 .25/.25 1.625 | 14,800 | 59,000 Yes No Void
-J2c 12,250 | 49,000 20% Void
-J3c 12,950 | 51,700 10% Void
-J4c 14,250 | 57,000 No Void
-JscC 11,400 | 45,500 207 Void
-Jé6C .5 12,700 | 50,800 No Void
BZ17-J1C .45 12,200 { 53,800 No Void
-J2C 12,000 | 52,800 No Void
-J3c 8,900 | 39,200 20% Void
-J4ac| 2.5 1.625 | 11,800 | 52,000 Yes 5% Void
-J5C| 4.0 3.5 15,950 No Bending demonstration
-J6E 1.625 13,700 | 60,200 Yes No Void
BZ15-QlE 10,900 | 48,000 No Void
-Q2E 10,500 | 46,200 10% Void
-Q3E 10,100 | 44,500 107 Veoid
-Q4E 12,490 | 55,000 5% Void
-Q5E 12,100 53,100 Yes No Void
-Q6E 1,625 | 11,000 48,400 No 207 Votd
-Q7E} 4.0 .45 3.5 9,850 Yes 20% Veids
bending demonstration
-Q8E 1.625 19,400 { 45,800 Yes 5% scattered void
-Q9E 16,000 | 44,000 No 5% scattered void
BZ18-21C 12,000 52,800 Yes No Void
-22C 10,000} 44,000 20% Void
-23C 11,5001 51,500 15% Void
BZ11-QlE 10,500 ] 46,200 No Void
~-Q2E 10,6C0 | 46,600
-Q3E 10,000} 44,000
-Q4E 10,900 | 48,000
-QSE 9,600 42,200
-Q6E 1.625 | 10,800/| 47,500 Yes No Void
-Q7E| 4.0 | .45 3.5 15,350 No No Void -
bending demonstration
BZ13-J1E .40 1.625 8,000 4C,00d Yes 27% Void
-J2E 9,400)] 47,000 27% Void
-J3E 8,000] 40,000 27% Void
-J4E .40 9,300 46.50d 27% Vvoid
BZ14-N1E .45 9,800| 44,000 10% Void
-N2E 9,000] 40,500 10% Void
*N3E 9,200 41,404 10% Void
-NYE] 4.0 | .45 .25/.25 1.625 9,300) 41,70 Yes 107% void
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TABLE 19 (Continued)

-

SPECIMEN |SPECIMEN DIMENSIONS | SUPPORT! LOAD |SHEAR | B2 JOINT
NO. L W T SPACING | (LBS) [ (PSI) FAILURE COMMENT
Bz4-Q1E  |2.5] .50 ].25/.25 1.625 | 16,000 {64,000 | Yes No void
-Q2E 16,100 [64,400| Yes 3% void
-Q3E 16,400 [65,600 | No No void
B21-Q1E 11,700 |46,700| Yes
-Q2E 11,400 |45,500
-Q3E 10,400 {45,500 No void .
BZ2-QlE 11,500 |[46,000 2% void, button
-Q2E 10,800 {43,200 No void 1
-Q3E 11,500 (46,000 ,
BZ5-J1C 11,800 {47,200
-J2¢ 11,300 |45,200 , thin braze
-J3¢ 11,600
BZ-QILE 10,600 [42,400
-Q2E 11,000 | 44,000
-Q3E 11,900 {47,500 \
BZ7-MLC | 11,150 {44,500 No void ]
-M2C 11,400 {45,600 5% void
-M3C 12,400 | 49,600 No void
BZ8-QlE 12,200 [48,700 S% void
-QZE ! 12,050 {48,100 No void
-Q3E % ) 12,500 150,000( Yes No void
BZ-12A-J1C .50 : 10,700 No Failed in bending
-J2¢C .45 ! 8,800 [35,500 Yes No void
-J3c .65 8,800 | 35,500 No void
BZ13A-PIE | .50 9,600 | 38,400 10% void, (Lines)
-P2C | 10,500 | 42,000 No void {
-P3C | : ) 9,800 |39,100 50% void, (Lines)
. i
BZ14-Q1C ' 12,900 {51,500 3% void
-Q2¢ | 12,300 |49,100 No void
-Qac 10,700 | 42,800 30% scattered void
BZ19-L1E 12,300 }49,200 107 void, (groove)
-L2¢ 10,500 |42,000! 207 void, (groove)
-L3C 11,800 {47,200 15% vold, (groove)
BZ25A-Q1C 11,000 |44,000] 3% void
-Q2¢ 10,700 42,800 No void
-JIE (2.5 |.50 }.25/.25] 1.625 10,100 le,aoo: Yes 5% void
g1

Strips were sawed from panels. Dim. are + .03
l.oads are saximum at braze line failure - Yielding was noted prior to failure.
Specimens hct failed had load removed after yielding.

VQ/1 shear stress based on fully plastic bending stress distributions which are
not applicable at the failure loads shown.

L
0 e .

5. Estimated percentage void 1isted in "comment" based on interface area of
specimens delaminated and X-ray of specimens not delaminated.

6. '"C" denotes specimen removed from other than edge of panel.
"E" denotes specimen removed from edge of panel,
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(1% HF, 2% HNO4 ETCH)
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The VQ/I shear data is shown in Table 19 for specimens
from 19 panels. Shear data from the last 11 panels was very
consistent and high. It is interesting to note that even with
large voids created by the .002, .005, .020 grooves cut in one
plate lamina (panel 19) the shear strength was high.

The sustained load stress corrosion resistance lap shear
testing is listed in Table 20 . All but one of the single lap
shear specimen from panel 11 have failed at less than 1000 hours.
Specimens from panels 14, 7, 1, 4, and 8 have indicated no early
failures with the exception of ipacimen BZ1-12 from panel 1 in
Group IV. Metallography will be performed on representative
specimensto establish cause of fallure. The data from double-
double lap shear specimens has been inconsistent. With four inter-
face braze joints per specimen good fit was impractical and overall
specimen braze shear strength is inconsistent at best. These
tests are in process and will characterize the stress corrosion
resistence of titanium brazed with silver-aluminum-manganese alloy.

The environmental sensitivity testing has indicated thus far
that the corrosion resistance of the brazed specimen is very good.
See Figure 71 for update of data generated to date.

3.1.4.5 Welding Development

The electron beam welded 6Al-4V titanium tensile and fatigue
specimens have been tested. See Tables No. 21 and 22 and
Figvre 72 for tabular and plotted data,respectively. As can
be noted on Figure 72 the endurance of EB welded specimen
follows closely the fatigue resistance of the parent metal. Only
the failure that occurred in the parent metal, weld and heat
affected zone, are plotted. A high percentage of specimens were
radius and loading hole failures. These failures were of sufficient
rumber of cycles to compare with the weld area failures.

The GTA welding of the 10 Nickel steel (HY180) plates have
been completed. Tensile specimens have been prepared and tested
(see Table 23 ). Additional tensile and CVN specimens are being
prepared for testing.

3.1.4.6 Adhesive Bonding and Development Tests

A summary of the adhesives test program is presented in
AFFDL-TR-73-40., All tests shown in test plan chart 603R100-7
have been completed except items 5, 7, 8, and 13. Items S and
7, the environmental effects (sump water) on adhesive shear strength
and cleavage, are undergoing exposure. Item 8, the dog-bone
fatigue test, is in a hold status pending a decision on whether
to conduct the test. Data from Items 9 (large area bond strength
and VQ/L shear) and 2 (adhesive shear modulus), and a discussion
of the adhesives program to 15 March 1973 are also presented in
the AFFDL-TR-73-40. 155
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Table 21
TENSILE TEST RESULTS
(FLAT TYPE, 2.0" G.L.)

Transverse Welds in Beta Annealed
6A1-4V Titanium, FTJ10940-149

Specimen  Welded Specimen YTS UTS %E 7%RA
Test No. Plate Thick Width (KSI) (KSI)
Thickness (inches)
(inches)
(1)
64T0-1 .675 .379 .7210 114.5 124.8 13.5 23.1
64T0-2 .675 .378 .7088 115.7 126.72 12.5 21.4
64T0-3 .675 .377 L7215 114.3 125.7 13.0 22.4
(2)
64T1-1 1.0 .376 .7305 116.1 126.7 13.0 21.7
64T1-2 1.0 .378 L7280 115.9 125.7 13.0 20.5
64T1-3 1.0 .375 .7210 115.0 125.4 13.0 22.5
(3)
64T2-1 2.0 .378 L7225 111.7 120.8 12.0 17.9
64T2-2 2.0 .376 .7188 113.6 122.8 12.0 16.7
i 64T2-3 2.0 375 .7188 110.9  120.9  12.0  18.9
Averages .675 115.0 25.6 13.0 22.3
1.0 115.7 125.9 13.0 21.6
2.0 112.1 121.5 12.90 17.8

| (1) Heat Number - RMI 295551
i (2) Heat Number - RMI 295561

(3 Heat Number - RMI 304583
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Table 23

10 Nickel Steel Weldments - Mechanical Properties

| SPECIMEN NO.  YIELD “OINT ULTIMATE ELONG-  R. A.
(KST) (KSI) ATION %
%
N1-T-1 186.1 188.7 14.0 71.7
N1-T-2 186.2 190.1 14.5 72.3
N1-T-3 183.5 186.7 14.0 72.4
’ N1-T-4 183.4 188.5 14.5 71.1
, N1-T~5 185.8 192.1 14.0 69.1
N1-T-6 185.8 191.3 14.0 69.5
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PL-717B from the B. F. Goodrich Company has been selected
as the adhesive to bhe used for the remainder of the AMAVS Program.
The decision was based primarily upon the failure mode of L/t
lap shear specimens and the VQ/I beams. There was no major
difference in various adhesive shear strength levels.

The failure mode difference indicated an advantage of the
PL-717B over AF-66 in an apparent crack stopping ability after
the bond line was initially ruptured. This was shown in the L/t
specimens where AF-66 specimans, following metal yield, ruptured
the bond line through peel and/or shear forces under continued
load applications. The PL-717 in some cases broke the metal even
though the large deyree of area reduction in the titanium during
vield had created a rupture in the bond line (up tc¢ 3/8" deep)
at the end of the lap joilnt, This extended load carrying ability
was also shown in the VQ where specimens of AF-66 had a distinct

failure point whereas the PL-717 specimens ceontinued to carry
lcad.

Details of significant tests completed since 15 March 1973
are presented in the following paragraphs.

4t Data - PL-717 and AF66 Adhesive; 6-6-2 Titanium Adherends

Empirical data was gruerated for four different overlap
dimensions for one thickness of titanium shcet. The Lest panel
geometry is shown in Figure 73 . For each overlap dimension,
two panels were bonded to permit a compar;son between bond cycles
Bond cycle consisted of curing 1 hour at 260°F under 30 ps
pressure. The adherends were cleaned by grit blasting followed by
2 15 wminute room temperature immersion in Pasa-Jell 107M, a
commercial acid solution from Semco Corporation.

Tests were conducted at three temperatures, -65, 80, and 180
degrees F for each overlap and adhesive material. The rcsults
are given in Tables 24 and 25 for each specimen tested. The
data is presented graphically in Figures 74 through 79 in
terms of load versus overlap dimension for each temperature and
adhesive. The load level corresponding to average yield strength
of the titanium substrates is superposed on each figure for
reference. Both adhesives exceeded the yield strength of the
metal for 1.5~ &nd 2.0+ inch overlaps at ~65 and £0 degrees F.
The data shown in Figure 79 {indicates rhat the PL-717 adhesive
might be capable of exceeding the reference yield strength at
180°F for an overlap greater than 2.0 inches. AF-66 (Figure 76 )
would probably not be capable of yielding the metal since the
load-lap length relationship appears to have rcached an asymptotic
load level near 2.0-inches overlap.

The failure modes of PL-717 and AF-66 bonded specimens were
dissimilar for the larger overlaps. Following metal yield,
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specimens bonded with AF-66 under continued load application
ultimately ruptured the bond line through peel and/or shear forces.
Specimens bonded with PL-717 under continued load application
following metal yield in some cases ruptured the metal. The
titanium sheet exhibited a large degree of ''mecking down' prior

to ultimate rupture, These differences in failure modes are
probably due to the differences in adhesive makeup. AF-66 is an
unsupported film with flow controlled through filler-additives;
PL-717 is a supported film where flow is controlled using a nylon
knit scrim cloth.

The data above was used to develop shear strength allowables.
The allowables are presented in the form of shear strength versus
(£/t) curves as a function of temperature. Since shear strength
results obtained for a similar adhesive i.e. Hysol's EA-9601 was
represented by a single strength versus ¢/t curve for aluminum
skins of .032 to .080-inch thickness, it is believed that these
curves can be used for other gages of titanium not too different
from the .050-inch gage. The allowables are presented in the
form of shear strength versus (f/t) curves as a function of temp-
erature. Since shear strength results obtained for a similar
adhegive i.e., Hysol's EA-9601 was represented by a single strength
versus {/t curve for aluminum skins of .032 to .080-inch thickness,
it is btelieved that these curves can be used for other gages of
titanium not too different from the .050-inch gage. The allowables
are presented in graphical form in Figures B0 and 81 . (The
allowables were actually derived in terms of load versus lap length
and then converted to strength versus (//t curves). These allowables
were obtained for each adhesive material in accordance with the
following equations

(Allowable)ij = (Average Result)ij - K U,1-asp (1)
where 1 = overlap
} = test temperature

v

degrees of freedom = 30

R
[ |

"rigk! = .05 for B-allowable

.01 for A-allowable

>
]

One-side tolerance limit for
95-percent confidence level

Sp = pocled standard deviation
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2"13'51_12

__2_’____“ (2)

where Vij = degrees of freedom for each
test condition

Sp =

§ij = standard deviation for each .
test condition

The value of 30 degrees of freedom was selected for use in
obtaining K in Equation (1) because this value corresponds to the
sample size required to set a distribution free B-allowable. The
calculated values of allowables, averages, Sij, and Sp are also
included in Table 26 . The A-allowables are not plotted.

_ The average result used in Equation (1) was the lower result
of X; and X, of Table 26 which are the averages of the first and
second bonding operations, respectively. The lower results was
used since there appears to be a significant variation in mean
strength due to the different bonding operations. Since there
was only one set of data available for the 1.5-inch overlap the
allowables (shown in Table 26 ) were determined graphically
from curves drawn through the calculated allowables for the ot! r
three overlap conditions.
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4t Data - PL-717 Adhesive and Beta C Titanium

Empirical data was generated for four different overlap dim-
ensions and one thickness of Beta C titanium gsheet (3A1-8V-6Cr-
». 4Mo-4Zr). The test panel geometry was the same as for the 6-6-2
titanium data except the .12" sheet was not slotted into "finger"
pods. Bond cycle and cleaning of adherends was also the same.

Tests were conducted at three temperatures, -65, 80, and 180
The results are

degrees F for each overlap and adhesive batch.

given in Table 27 for each specimen tested. The data is presented s
graphically in Figures 82 through 84 in terms of load versus

overlap dimension for each temperature and batch. The load level
corresponding to average ultimate strength of the titanium
substrates is superposed on each figure for reference. Certain
specimens of the 2-inch overlap test series failed within the
0.050 metal at -65F and 80F; several others of this same series
failed at the loading hole in net section tension. All other
specimens tested failed within the adhesive bond line.

One of the test panels which was bonded with a l-inch overlap
yielded several low test results. At some point in the fabrication
process the panel details became misaligned sufficiently to cause
a larger gap between the two (0.125 thick) center details than was
normally obtained. The wider gap allowed the epoxy matrix of the
adhesive material to flow or "bleed-out'" more than the other panels.
The high flow characteristic of PL-717 adhesive is a shortcoming
of the system for small area bonding and careful attention must
be exercised to prevent excessive bleed-out in bonding. Five test
specimen from this panel gave low results which were relsted to
82

excessive flow; these are noted as applicable on Figures s
83 , and 84

The data above was used to develop shear strength allowables.

The allowables are presented in the form of shear strength versus
The allowables are

(L/t) curves as a function of temperature.
. (The allowables were

presented in graphical form in Figure 85
actually derived in terms of load versus lap length and then con-

verted to strength versus L/t curves). The allowables were obtained
in accordance with the procedure used for the 6-6-2 titanium data

above.

A comparison of the B-allowables for the subject alloy with

6A1-6V-2Sn is given in Figure 86 . The allowables for Beta C
alloy equal or exceced the allowables for the latter alloy at all

test conditions.

181

—— T




TSAIYIS SIHL JO NIWIDALS ¥3IHIO Ol

A3YVIW0D MOTd FAISTHAV SSADXT GALII WAL NAWINAAS 40 SHDHId YIINAD TVIIN NIAMIIL dvO  (9)
NAWIDAdS NO T133d AATSSADXIA GAMOTIV FTOH ONIAVOT LV FdNTIVA ONId¥vad  (G)

Z618# HOLVE AA1SIHAV CASN Z# INOE 1103# HOLVE AAISIHAV JIASN T# QNOT  «¥)

d3ION SSTINN STINTIVI ANOG (€)

AI1Ivd TVIAR  7)

’

AI0H ONIQVOT SSO¥DV NOISNAL NCI1O3S 1aN (1)

53.LON
AHvooqu (1)"200¢
089¢1 0%0S 1 Aﬂvcoomﬂ Amv:ommﬂ 06912 +00002
099¢1 00Z%1 (1)05€6T (7)0661 AmvomqﬁN +00002
+ Z . t
ovyvl Amvo¢wﬁﬁ A:ooqﬁ AHV;oooH 06127 ANVOONNN 00° 2
00%91 uoLLT
0v901 0%S2Z1 000L1 008L1 05202 009172
02601 00%Z1 00891 002LT 000072 00%1t
00801 00921 000L1 10081 00661 00%12 06° 1T
078 00€8 onoquH 002€1 00191 00281
Acchoh 0998 00221 000C 1 Gvoowﬁ 086LT
> 7200%¢L 0zL8 00%11 00621 000/1 0Z€81 00°'1
(9) (9)
0089 00¢ !
001% 058% 00Z¢ 00! 00%6 00801
00ZY 006% 002L DYANA 0096 08€£0T
006€ 00LYy 080¢ 00%L 006 YA 05°0
(HON1/91) (HONT/91) (HONI/€1)
: , A (- defaaa
Aqvm* puog A¢vm¢ puod T PUO o T# PUOE  (y7d puogd Aqu* puog {-u1l) [31940

4 -
moomﬂ 008 4,59
JAISAHAY (TL-71d ANV R0TIV WNINVIIL O V1€
AmeHH:mmm AVIHS dVI¥3A0

LT ®19EL

182




469~ 3e 3s3] KOV wnIuelT] D elag pue aarsoypy /(1L 1d ¢8 2Ind1g

yout ‘ysdus deraaaq

06 ¢ 00°¢ 06°1 00°1 06"

INOP3I3Ld 9ATSIYPY IALSS3IX]

.//f \\\\\\ 91
/A

219eMOT1YV mmmmm:ml/ / .
JV\\\ 8 481
sainy1eg ON
~
(Ao11v 11) .\ Pt 1 Jdoz
nj - °
1ea>1ddy "1y pajewrasy \ﬂW\\\ : 26184 4925 SATSIUDY o
.o - . .o o . .
00912 © [108# 4 3ATSaypV JNc

youy/sdyy ‘peorq




408 3® 3S3L AOT1V WnTuelTL ) p33g pue dATSAYpY /I¢ Td £8§ 2In81d

yout ‘y33uag depasaQ
06°¢C 00°¢ 0s°1 00°1 0¢”

T T B T T ; 0

4 \\\ g ¢ h
—| 7 _cls « m \\
d «—f¢ .g — TL } —J-——>d | \\\ 1%
. . ] |
T4 050°0 = 3 _ \\\ . 9
_ 4
In
/ 48 9 3
ZST8# Uoieg aATS3YPY e 7/ & -
1108 ud3eg aATsS3ypyo \\ ot = ‘
/ -
Inopaajyg 3AISIYpPVY m>ﬂmmmoxm.l\\\nv\ 471 mm \
/i : |
v Kl "
.
\\\\xn“/rn.mﬁpmso-< stseqg-g 491 -
7 !
el L
e 8 4 81
(fortv 11) 1e21dAr "4 \m\\\
00961 e 1 9¢ o
(




4081 3e 3s9l Lo[IV wniueall ) e313g pue 2ATSaYpy (1/ 1d 48 2an31g

yout ‘yaB3ua deraaan

0S¢ 00°¢ 0s°1 00°1 0s”
T T T T T Mvvo
yd
| VAR b
Iy s :
d «—[ - {— d 7
| ] \\\\\\w

YA 050°0 = _ S 4

i sa119g
\\\.udl/l// sTy3 usmioads | g

\\\ 19Yy3Q jo aey3s

papa3ox3 Ing paald
7 ot

utd \\\\\‘
3e aanyteg Suiaeag a1qemo11V sised-d 171
.u;///rﬁ\\\\\\ 9 1qemo1] d
7 -
[e]

-1 91
(Ao11v 11) 1eo1dA1 Mg nmumEAumm 8t
00161 ZS18# yoaed 2aIS3Ypve 4 oz

1108# 4ydo3ed aatIsaypyo

your/sdiy ‘peot

185




n

aATsaupy (1¢ 71d/ACTIV wnTuedll (3Zy-OoWy-1D9-A8-1VE) ,0 BIag, papuog Sajqemollv-d4 G8 2In1g

/7
0t 9z 2z 81 01 01 ,

v T T T T T — v T T T Y T i

<0001

L F 4—*d 0002

000¢

1

/
/

"ur/qy

4,081 40009

000$

43000

L

1,08 000/

0008

1sd ‘y3Busazg aeays (1)

4

L

1J7 = 4 4.69- 0006
[o]

00001

1

0001t

186




9ATSaYPY /1. Td Y314 papuod SACTIV WnTuelty om] 103 S3TqemoTI¥-€ 3O

a/n
8¢ 9¢ 0t 9¢ cc 81 71 A
T T T T T _ T T 9
B
(| —7 |— |
de—fF—— — 38 m w ]— 4 _

= .lﬂlr - |
ol 0c0° 0 = ul*

u

S¢-A9-1V9

Lo11v
KOYTV AZH-OWY-1D9-AB-[VE e e e

A

1

I

1

~4

I

uostaedwod gg aanty

0001

000¢

000¢

oooY

000¢

0009

000..

0009

0006

00001

¥sd ‘ysBusang aeays (1)




3.1.4.7 Specifications

Procurement Specifications - Convair specification numbers have been
assigned to the procurement specifications which are being prepared
for the program. A list of specifications are as follows:

FMS-1108 Aluminum Alloy (7050) Sheet and Plate
FMS-1109 Titanium Alloy, 6Al-4V Beta Annealed, Bar & Plate

FMS-1111 Steel Alloy, 10Ni-2Cr-1Mo-8Co (10 Nickel) Bar,
Forged Billet and Plate

FMS-1112 Wire, Welding, Type 10 Nickel Steel

FMS-1113 Titanium Alloy, 3A1-8V-6Cr-4Mo-4Z (Beta C),
Sheet, Strip and Plate

FMS-1114 Brazing Alloy, Ag-Al-Mn, Strip

FMS-1115 Wire, Welding, 6Al1-4V Titanium Alloy, Extra
Low Interstitial

FMS-1116  Adhesive, 250°F Cure, 180°F Service

All of these specifications are in some stage of pveparation.
except FMS-1108 which is being held pending the results of design
and stress studies to determine actual need for this material.
Process specification to cover welding, brazing, and adhesive
bonding processes will also be performed and are scheduled to start
into preparation in August after more processing data becomes
available.

Non-Destructive Inspection Specifications - Presently prepared
Convair specifications will be used as applicable for the inspection
of raw materials and compopents. The foilowing is a list of the
specification numbers and the type of inspection they cover:

FPS-1084 Penetrant Inspection (A modification of MIL-1-6866)

FPS-0040 Magnetic Particle Inspection (A modification of
MIL-1-6868)

FPS-0018 Longitudinal Wave Ultrasonic Inspection (Similar
to MIL-1-8950)
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FPS-1086 Delta Scan Ultrasonic Inspection (No existing
Military specification)

FPS-0065 Weld Joint Inspection - Combine penetrant,
magnetic particle and radiographic inspection
(No existing single Military specification)

FPS-1076 Magnetic Rubber Inspection (no existing Military
specification) :

All of the above specifications have been wr.i.ten '
with the exception of FSP-1086 which is presently being
written. All require that an NDTS be prepared for general use
and for individual parts when specified by Engineering.

Fracture Acceptance Criteria - A fracture acceptance criteria for
inclusion in procurement specifications is being formulated. The
major problem is to establish an acceptance criteria for the two

very tough materials, beta annealed 6A1-4V titanium and 10 Nickel

steel, Acceptable test procedures to determine a valid Ky, valve
for the 6Al-4V alloy in thicknesses less than 1.50 inch ang 4,00
jnches for 10 Nickel steel do not presently exist. As a result,
only procuring, chemical composition and microstructural controls
combined with some supplemental type of test car be used for
material acceptance testing. Present plans ere to require these
controls and add Charpy V-notch impact testing as a supplement.
The material procurement specifications will reflect this
philosophy except for Beta C titanium. Valid Ky, values can be
obtained down to as low as ¥ inch thick and perhgps to as thin

as 3/8 inch.

3.1.4.8 Corrosion Prevention System

The corrosion prevention finish system selected for use on
metallic materials proposed for the AMAVS Program is described in
the Phase Ib Summary Renort, AFFDL-TR-73-40. These finishes are
compatible with those required by Rockwell International for the
B~1, except that the top coats of paint, for exterior surfaces of
the test articles will be MIL-L-81352 acrylic lacquer in lieu of
MIL-C-83286 polyurethane coating.




3.2 TESTING

During the second six-month period of this program, most
materials testing and all Group I component testing were accomp-
lished. Additionally, Group II component test requirements were
finalized and significant progress was made in preparing for full
scale testing.

3.2.1 Materials Testing

Materials testing requirements were established prior to the
reporting period and are presented in AFFDL-TR-73-1. Most of the
required testing has been accomplished during the reporting period
as indicated in Table 28 . Significant test results are
summarized in this paregraph and Section 3.1.3 and 3.1.4,

3.2.2 Component Testing

The Group I component test program was completed during the
reporting period.

The following paragraphs describe the results obtained from
each of the component test specimens. Note: Report Number
FZM-6054 describes the specimens.

3.2.2.1 Fastener Comparison Tests - Brazed Laminates - Drawing
Number 603FTBO13

Teats completed and results are shown in AFFDL-TR-73-40,
Phase Ib Summary Report.

3.2.2.2 3/8 Scale Brazed Lower Plate - First Specimen - Drawing
Number 603FTB0OS

Tests completed and results are shown in AFFDL-TR-73-40,
Phase 1b Summary Report.
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3.2.2.3 3/8 Scale Brazed Lower Plate - Second Specimen

Specimen was put into test with a 48.32 cycles per flight
fatigue spectrum., After two service lives were completed, in-
spection revealed possible delamination occurring. The testing
was continued for an additional 400 flights, then stopped for
another inspection. The inspection revealed delamination oc-
curring at two of the braze splices, Testing was discontinued
and the specimen was removed from the fixture and subjected to
destructive ingpection. The inspection and the associated
Engineering investigation diaclosed that the failure was probably
due to a poor brazed joint which had been caused by inadequate
purging during the braze operation. A possible aggravating cause
was jolnt eccentricity. As a result of this test, the configura-
tion of the lower plate has been changed to eliminate the joint
eccentricity and to improve the brazing parameters. Refer to
Section 3.1.4 for further discussion of purging problem.

3.2.2.4 Interim Crack Stopper Test - First Specimen - Drawing
Number 603FTBOS1

Tests completed and results are shown in AFFDL-TR-73-40,
Phase 1Ib Summary Report.

3.2.2.5 lnterim Crack Stopper Test - Second Specimen

This specimen was configured the same as the first specimen
except that the eloxed notch was only 0.60 inch long and 0.30
inch deep (half-moon shaped) and was completely contained in one
of the center bars, Where the first specimen would be categorized
as fast crack growth, this specimen would be categorized as slow
crack growth., The specimen was fatigue cycled, first by spectrum
loading, then with constant amplitude loading until a crack ap-
peared at the ends of the notch., At this point the loading was
changed back to spectrum cycling and continued until the crack
completely traversed the bar, This took 1075 flights, or approxi-
mately 0.84 service lives. Following this, the bar was cut away
and the web under the bar was examined. Examination showed that
the braze between the bar and the web had failed, and that the
crack had not penetrated into the web.

3.2.2.6 3/8 Scale Brazed Lower Lug - First Specimen - Drawing
Number 603FTB004

The specimen was fatigue loaded for four gervice lives using
a 38,32 cycles per flight fatigue spectrum. One hundred percent
limit load was 9/64 of the full sizeairplane load. The specimen was




thoroughly examined after four lives of testing, and no defect
was found other than some galling between the steel bushing and
the lug. The bushing was smoothed slightly, greased and
reinstalled. Testing was continued for two more lives. After
the sixth life the bushing was again removed and the part was
inspected. Inspection revealed several cracks in the interior
of the pivot pin hole, in all three layers. The bugshing was
again reinstalled and testing resumed, but the gpectrum was
changed to the 179.32 cycles per flight crack growth spectrum,
The specimen failed in the 650th flight after six service lives.

3.2.2.7 3/8 Scale Brazed Lower Lug - Second Specimen

This specimen was the same as the first except that a 16 RMS
finish was created on the interior of the pivot pin hole, and
the exterior surface of the bushing was dry-film lubricated.

The specimen was fatigue cycled for four fatigue lives in
the same manner as the first specimen. After the four lives of
testing, the bushing was removed and the specimen was inspected.
No cracks were found, and there was no galling on the inside of
the hole,

The specimen was removed from the test fixture and was elox
notched 0,12 inch x 0.12 inch across the edge of the pivot pin
hole in one of the outside layers of material.

The part was replaced in the test machine and spectrum
cycled using the 179.32 cycles per flight spectrum. After 260
flights no crack had appeared so thes loading was changed to con-
stant amplitude, using a loading of 3.7% to 65.4% of limit. After
1200 cycles a crack was detected at the end of the elox slot on
the surface of the specimen. Spectrum testing was resumed. As
the crack progressed along the outside layer, a separate crack
initiated in the opposite surface. The two cracks continued to
propagate until failure occurred at 998 flights after crack
initiation,

The total test history on the part at the time of failure
was: Four lives, 1200 constant amplitude cycles and 1258 flights.




3.2.2.8 Fagsteper Comparjison Tests - Bopnded Beta C l.aminate -
Drawing No, 603FTBOlé4

Test results are as follows:

Test Failing No. of Type of
Specime stene _Type Load Cycles Failure

2-7/16

1 Bolts Static 87,300 ¢ Net Section
2-7/16

2 Bolts Static 86,000 ¢ Net Section
2-7/16

3 Bolit Static 85,100 ¢ Net Section
2-7/16

4 Taperloks Static 84,100 ¢ Net Section
2-7/16

5 Taperloks Static 84,700 ¢ Net Section
2-7/16

6 Taperloks Stati- 79,000 # Net Section
2-7/16

7 Bolts Fatigue* 62,348
2-7/16

8 Bolts Fatigue* 42,515
2-7/16

9 Bolts Fatigue¥* 44,207
2-7/16

10 Taperloks Fatigue* 157, 644%*
2-7/16

11 Taperlok Fatigue* 201, 700%*
2-7/16

12 Taperlokg Fatigue* 53, 000% ¥k

*1170 Lbs~To0-23,400 Lbs.
**Failed In Grips
***Nontest Bolts Failed - Bolts were reused

3.2.2.9 Bonded Shear Web Stability Tests - Dwg, No, 603FTBO12

Two specimens, each consisting of two plies of 0.125" thick
Beta C titanium bonded together, were tested to failure in a
"picture frame'" shear fixture. The failing loads of the two
specimens were within 2% of each other. Shear stress at failure
vas approximately 93,000 psi.
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The test results showed that the adhesive (PL-717) successfully
held the two plies together until monolithic buckling took place.
The actual buckling stress agreed well with the buckling stress
predicted by standard analytical techniques using the combined
thicknesses of the two plies as a single thickness.

One specimen consisting of three plies of 0.125" thick Beta C
titanium bonded together was also tested. In this case, the ad-
hesive held the plies together until rupture of the part occurred
at a shear stress of 96,500 psi.

3.2.3 Full Scale Testing

Testing is tu be accomplished on a full-scale WCTS of the
configuration to be chosen at the end of Phase II. This testing
will be accomplished at AFFDL in the test setup shown in
Figure L, . Convair will provide test planning, test fixtures
and the lest article , and AFFDL will provide test equipment and
perform the teating, A definition of the planned testing is
presented in AFFDL-TR-73-40 along with a8 description of the
physical setup to be ugsed for this testing.

3.2.3.1 Progress During Six-Month Period

A plan was developed for manufacturing the full scale test
fixture, shipping it to AFFDL and reassembling it. This plan
involves two shipments of hardware as shown in Figures 88 and

89 . The initial shipment will allow early installation and
checkout of loading systems and of some data systems elements.
The final shipment will complete the setup and will facilitate
final checkout and testing. Design of the test fixture is nearing
completion, as is the procurement of fixture materials and hard-
ware. Manufacture of the c.-ame for the initial hardware shipment
is approximately 50% complete, Status at the end of the reporting
period is shown in Table 2) for the main elements of the test
fixture,
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3.3 QUALITY ASSURANCE AND NDI

The NDI applications development program has been redefinec
to parallel the recent changes in the configuraticn designs, As
a result, the NDI specimen requirements were reidentified and
have been outlined in the following drawings.

NDI SPECIMEN TYPE DRAWING FIGURE
EB and GTA Welding 603R231 90 .
Bonded Sandwich 603R232 91
Bonded Laminate 603R233 92
Raw Material and Brsazing 603R234 93

3.3.1 Brazed Joint Evaluation

Six 7.5 x 12 inch NDI flaw induction and technique development
specimens have been fabricated to investigate various means of in-
ducing controllable flaws into a braze line. Specimens MD3189-1,
MD3189-2, MD3208 and MD3209, sketches shown in Figures 94
through 97 , were built on the basis of results obtained from
previous specimens. .

A specific objective of the flaw induction program is to
achieve a nonwetted surface, It is anticipated that this condi-
tion will be the most difficult to detect (see Sectiom 4,3.3 of
AFFDL-TR-73-40). Reasponses obtained by nondestructive methods
from nonwetted areas will be compared to responses from voids
(which are easily induced) and inclusions such as stezinless steel
buttons. If the responses from the two types of defects are
identical, only the most easily applied method will be used in
producing reference part defects,

The specimens are also being used to determine suitable
inspection methods. The NDI techniques evaluated on the speci-
mens thus far sre: ultrasonic pulse-echo, both contact and
immersion ultrasomics, through transmission, a ring pattern
application (Slik Bond Tester) and X-ray. All of the techniques
except X-ray have bsen effective on all the induced flaws. One
large area in specimen MD3208 (see Figure 98 ) was not detected
by X-ray and is believed to be & nonwetted surface.
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Based on work completed thus far, four conclusions can be
drawn:

(1) No detectability problems have been encountered with any of
the uitrasonic techniques im the .25 inch thick laminate
specimens. All techniques have readily detected the defects.

(2) The results from ultrasonic pulse-echo tests run from
opposite sides of specimens are identical. Experience has
shown that in some cases pulse-echo responses from one side
¢f a part are not identical to those from the opposite side.

(3) Corrosives such as acids do induce flaws, but flaw shape and
size are difficult to control,

(4) '"Stop-off'" materials such as Everlube T-50 or tungsten
disulfide are effective in creating a void condition (alloy
completely missing in an er-ea). They are not effective in
producing a nonwetted surface.

All of the scheduled brazed manufacturing and engineering
specimens have been inspected using X-ray and ultrasonic pulse
echo., These specimens include the following.

603R100-3-30, -31, -32, -33, -34, -35, -38, -39, -40, -4i,
=42, 43

Bz2500-1, -2, -3, -4, -5, -6, -7, -7A, -8, -10, -11, -12,
-12A, -13, -13A, ~-l4, -l4a, -15, -17, -18, -19,
-20, =21, -23, -24, -25, -25A, <44, =45

603FTB004-13 #1 and #2

603FTBO05-13 #1, #2 before and after test

603FTB0O50-100BZ #1 before and after test, #2 before test.

All of the manufacturing and engineering specimens were
inspected using X-ray and ultrasonic pulse-echo.

The 603R100-3 and BZ500 specimens evaluated the effects of
variables in the manufacturing process. All of these specimens
had .25 inch thick laminates. Results obtained from the two
methods generally agree with each other,

203/204




) . el o - -
SDEC, IMEN MATERiAL i .‘:’m.“‘“‘“ SDEC INVF
- —— - _—
i we o -
: | 4
1
O win + -t
- -
! .
| & P [ A Al ' l »
v AL TUIN VY |
\ _ - I MD32:
. ! |
|
i
'
ottt I S
!
i
. i |
. A TER WA ing Y
i _ O L5
J— 23 S JI
_ | | —_
. i { !
| | |
GA, oY BETA
-. H . TranuM '
. i
1
)
' '
| .
. 4=

O STREL
18 "L O

| -
S R




' L NIEN wareguo -N:"'“""““
M
Feo- e e o -
- 0"t B
| ‘,le ™. ‘\, o oM BT 2 L
\ “ )1. g7 @uwto
»(y,i\t;‘/ it
| > o
1 -t b'[-s\.
’ MDJ3? 1
f—-—- - - r
‘ :
i
) I
P H
| ¥ s {
| \LK,\T;X\ R © % WL, z
. oA
S0~ /
e
V‘ PR
.ot o7
SEVER ot LN, H
! i .
————— _i'
A ¥ TECY,
- A & i
N ,“"‘“;»" _-;/,/' 'om'c'&llk | 2
5 oA w H
e )/1 -"’/y-‘/ /2 | H
t g “a Q¥ STl L
{’."!'/ R 4 @ TR 1
3 RN o = —wD
« W
. 3
e w. 800 Bl Bed Wi
| - TE) G WELD AT 3. i
100 Wby :
T
! Lo
|
© NLgTER L v
o wray)
PEOOVLABILITY SPECRACNS Will BELOME KD
e'awﬂu ur("alu CDMPLE"DN‘
OUMCABILITY WPELINEN MAT BELOME ND!
=T * !}'&mu URON TMRETION
i 1 [TWBLD FLaw
YOLL] VPR ] et
L PO | 1AL DA
P 2ia O
NOTED (@UEPT Ay BOwN)
W TR H"""-J
Figure 90 i
£B AMD GTA WELDING
NDIL  SPECIMENS

rmt 2T — 1




<p E 5 PART NO. MATERIAL
DDECJ M = ‘\l DKIN WRE

- .

MD 3196 wAL-4} MiLL
ANMNEALED

MD3195 |ghe-dv ML
ANNT.ALL D
MD2249 BETA C
MD3266 | 20za AMUNNIM
mp3256 |\

MD3267 i

MD3258
MC3268
MD32260
MD3272 :
MD2269 ;
MD3262 '
© MD3z7T!
MD3270
I MD3zed -
MD3255
MD3261 " .
D323 | PC28 LKiMiN™T

MD3257 164047 |
i irr/vfiz L H

i | \ADA205
MpIZ7B8
Mp1279

|
!
MU 728C ’ \

MC 3281 LAL AV MIL
! ANMEM D I




|

GAGE QUANTITY | "QUANTITY.
T JoRe] T, ‘] QEQUIRED I SPECIMEN PART NO. | MATERIAL :@gl‘g
- - me v m———— Jo—
: |
.06y i | .o@si \ I {2024 MUNMINON «
1 Il |
. ! i
%0 Os2| ; ;
; ko)
125 L0403
L00 |/ vn| OS5 3
i
s o8] 2 -
080 Loes| 3
035 . ! |
‘ s 2 i GAL-IY ML
VES logo! 3 ! ANNERLED 77 10
i ' ' i
/90 i o2l 2 :
/20! | ozzt =
! |
0501 |03zl = b -
deo | joso| 3 |
. i , ! PRELIM:NARY
) 100 4| rediNiage P
150 l.oso ' 3 | SELTCT 1O h
U i i ! . 2024 AuNnwM| 10
020 (r7Hn|. OS50 L 2 :
300 |27mr, 062, 3 l
.zls" |.o62! 2 ;
425 K .063| 2 ‘ /
2507w 030 2 i S
[}
/35 .0%0| 3 |
60| 1 |ozo) 2 }
/35 |oéo| 2 |
| .
/a5 ‘ 060 2
200 (/7 raw| 060 a
! TITANIUM
| AND
| ALUMINUNM
| AS REQUIRED
! TO EXTEND
i ; PRELIMINARY
j i DEVELOPMENT| 18
i
|
|




PART NO.

MATERIAL

TGQUANTITY

REQUIRED

ASERT

_——— ..

OUBLE -

L0244 MUNMINONM

CARL-4V ML
RANERLLED 77

. .RE

2O RE ALMMNIM

TITANIUM
AND

ALUMINUNM
AS REQUIRED
TO EXTEND
PRELIMINARY
DEVELOPMENT

- o mn—

SELECTED DANELY
FOR INSPRCT
RER PARTS

L

3.DETAILED (ONSTRULTION AND QUANTITY
DETERMINED BY PRELIMINARY RESULTS, DESIGM
ITERATION AND !NSPECTION CRITEE n

2. FLAW TYPES ~ TEFLCN TAPE NSERTS. OTHER
TYPES AS REQUIKED

I USE. PLTIT ADMESIVE FOR ALL PANELS
NOTES _exrsrr as shown

Figure 91
PRELIMINARY OBSIGN DRAWING

NDi SPECIMENS
» [T T ST
GENERAL DYNAMICS GO3R232

fuwdrlm Divigion
= 207/208 ﬁ

BONDED SANDWICH




STEPPED LAMINATE

SPECIMEN PART NO. | METERIAL + -;h{‘\;l; s %\:340\1\"

MD23204 [BeTA ¢ Peslaas[aslizs| s

MO»203 |BETA € lpe2]izslis|oet 2

MD3283% BETA C  [400}I00].00].100!

MD225% [BeTAC  [100]. 100 3 !

MD3254 BETA C |0 |2 '

ND32E | BETAC [25]|ns 125|100 !

MD2252 | BETAC |26 .28 |0 3|
|
! - PRELIMINARY
P TECHNQLE
! IEEEEC_’E_“\/




[\_I-IARV
QUE
TION

—

SPECIMEN TOART 0. | THICKNESS( MATERIAL *ﬂ
EDOE M N amo
OV /2078 AL |.LOO/ B4 AL
€0GE MEMBPEL — .Ole / 2024 AL} .180)2028 AL
Ol /prey. T1| 3004w TI| [0
. O\o J0%A T | 125/ CAL-#/ I
)<9’d’ \/‘ *® \9‘““
EDGE MEMER PANELS see NoTEs | smE NOTE B | sEE NOTES




THCKNESS] MATERIAL
EDAE MBMBPR | BXIM
016 /2024 AL | .LOCY 224 AL
.0\e [ 2028 ALj 180 J2028 AL
O\ /oM. T1| 300, LANWTI| 10
. Ol jCoMA TI| 125/ M-8V Ti

ol e ]n)

SEE NOTL S| GRE NOTE 3| SEE NITEX

3. CONSTRUCTION AND QUANITY OF PHASE SPECMEN

WILL BE DETERMINED BY SRELIMINARY RESULT, DESIGA
ITERATION AND INSPECTION CRITERIA

2 FLAW TYPES- TEFLON TAPE. AND JOTHERS IF REQUIRED
L USE PLTIT ADMESWE FOR ALL  SPECIMENS

Figure 92
PRELLIMINANY DESIGN DRAVWING

BONDED LAMINATE
ND! SPECIMENS
o T
GENSBRAL OYNAMICS
S NAMICS | (03R2373

L T 73

fei Wertr Operction i
- 209 /210 = 5




PRY HO. |

RAW MATERIAL SPECIMENS
MD™20\ |6
!
MD3210
MD2206 | B
~
:
in s
\0& 'rﬂ (l: L\\
Yl A >
/ N N~
//,/ Ip ,-'i/ e q_d)
/ - SIS
[N RERK
< I S
S 3 &
. <
300 /"“ »w 6\2\0\1 @ ESTAR
i
A Sped
-7 A REQU
ADD\

2 HOLES 7O BE FLAT BOTTOMED 8 3/6d DIA

. PARTS TO WAVE MTD( METAL TRAVEL.
DISTANCE ) OF % 2.215,1.(50, 1,260, 0.815,
0.25, 0.500 . 0.375 4 0.250

NOTES (BXCEPT AS SHOWN




PaRT NO.| MATERIAL

QUANTITY !
eead

BRAZED SPECIMENS

MDY20L [eAL4v T,

MD2270 | 1O N\ STEEL

MD2¥206 | BETA C

\

ESTABLISH NEED FOR
RERERENCE BLOUS,
SPECIFY DES\GIMN

REQUIREMENTS FOR
ADDV\TIONAL BLOCKS

\/ MATERIAL"

BETA ANNEALED &AL-4V TITANIUM

LFLAW TYPE W
OF PRELIMIN

NOTES (EXCH

RAW N

i

Bk S

=
TR R I e e Y

TN ...a-u..p_,_‘!-rn R T R}



. an=s oART MINA | TYPE FLAW | QTY |
?,_ ST IMENS No.  (EREEC REQD

MDABT-1-1]250]|. 2% CORROPIVE |
MO2BT-1-2 {250 |.7%0 INCLUSION l
MDY -1 PZSO 250 CORROSIVE |
P MD2(89-1-2 |290].250( | INCLUSION | 1

rd MDI88 1| 20]250] | coRROSWE | |

MD3/88-2 2501 250) | CORROSIVE i

MOD324% 2501250 CORROSIVE 1

MD3209 2501250 INCLUSION '

MD3210 4001600 CORROSIVE ]

/ MO32il  aooleoo| | corrostve |

/// o MD3212-1 |22| 20| | seE NoTE |

A - MO0 2213-1}2%0|.250 |
\< MATE RIAL . i

i (-4V TITAN:
BETA ANNEALED GAL-4V TITANIUM MD3215 {000 |

MD 3222 10&400&2)1 {
400

mMD32273 (400|400 SEE NOTE ! |

LFLAW TYPE WiLL BE DEFINED As A RESULT
OF PRELIMINARY STUDIES

NOTES (EXCEPT AS 3HOWN)

Figure 93

PREVUMINARY DESIEN DRAWING

RAW MATERIAL AND BRAZED
NDl  SPECIMENS
5 —_TETR
G, A | [ 53R234

- S 211/212 E




=
N
i 7‘.
P b B Bar @b
© | Dia. Dia. N Dia. St I}
(10
g TYPE TYPE i
1 . 2 %5 7.5
* FLAWS ' .t FLAWS ‘
25" .75" Loo.13m ’l]_ L5 LY
Dia Dia. Dia. -<i4,/ Dia. T
2.0
. L i
] . . P - ‘ |
_— <_J//-5 v Y
o | t
SPACER, TYP 12 e L

PLACES

|<—3.or~rr> -« |,5~»

-
-

SPECIMEN NO.

REFERENCE B
MATERTAL:

BRAZE ..LLOY:
PART NUMBFR:

SPACERS:

FLAWS:

LAMINATE
THICKNESS:

v

20

MD 3189-1

/P __603R100-3 "RB"

6A1 - 4V Beta Processed Titanium
Dynabraze B (Ag - 5.0 Al - .03 Mn)

To be vibroetched at location shown
To be .12" diameter, .002" thick stainless steel
placed in hole punched in alloy
TYPE 1 _ Everlube T-10
TYPE 2 _Tungsten Disulfide
Tl ,L25"
T2 - 25"
T3
Figure 94 ROUGH SKETCH OF NDI SPECIMEN MD3189-1
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MD 3189-2

<1 "

6Al - 4V Beta Processed Titanium

Dynabraze B (Ag - 5.0 Al - .03 Mn)

To be vibroetched at location shown

To be .12" diameter, ,002" thick stainless steel
placed in hole punched in alloy

TYPE 1 _ Sulfuric Acid

TYPE 2 _Nitric Acid-Hydrofloric Acid Cleaning (Pickling)
Solution

Tl 25"

T2 25"

T3

Figure 95 ROUGH SKETCH OF NDI SPECIMEN MD3189-2
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; SPECIMEN NO, __MD3208

’ REFERENCE B/P 603R100-3 '"B"

MATERIAL: 6Al - 4V Beta Processed Titanium

BRAZE ALLOY: Dynabraze B (Ag - 5.0 Al - .03 Mn)

PART NUMBER: To be vibroetched at location shown

SPACERS: To be .12" diameter, .002" thick stainless steel
placed in hole punched in alloy

TYPE 1 Sulfuric Acid

FLAWS: TYPE 2 Nitric Acid

Tl . "
LAMINATE T2 . %_jf_%'
THICKNESS:: 3

Figure 96 ROUGH SKETCH OF NDI1 SPECIMEN MD3208
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SPECIMEN NO. MD 3209
REFERENCE B/P 603R100-3 "'B"

MATERIAL: 6Al

- 4V Beta Processed Titanium

.002" thick stainless steel

BRAZE ALLOY: Dynabraze B (Ag - 5.0 Al --.03 Mn)
PART NUMBER: To be vibroetcihed at locatioca shown
SPACERS: To be .12" diameter,
placed in hole punched in alloy
TYPE 1 Everlube T-10
FLAWS: TYPE 2 I Disulfid
T1 .25"
LAMINATE T2 25"
THICKNESS: I3

Figure 97 ROUGH SKETCH OF NDI SPECIMEN MD3209
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Figure 98 ULTRASONIC C-SCAN OF NDI SPECIMEN MD3208




The first 603FTB005-13 (representative of the lower plate)
produced drastically different X-ray and ultrasonic results,
The part was later shown to have very large areas of nonwetted
surface, see Section 4,3.3.1 of AFFDL-TR-73-40.

A second 603FTB005-13 was built and tested. The part was
built of components which were warped in manufacturing. To com-
pensate for this warpage, shims and multiple layers of braze
alloy were used. Ultrasonic pulse-echo evaluations of the part
before test (Figure 99 ) showed the part to be relatively free
of defects. The part was then fatigue tested until it failed
(prematurely). A second ultrasonic test showed the part to be
extensively damaged (Figure 100 ),

Two 603FTBO04 simulations of the lower lug were inspected.
Ultrasonic inspection was made difficult by the abrupt thickness
changes in the parts. Acceptable recordings were obtained,
however.

Twc crack arrest demonstration specimens were inspected
before and after test.

3.3.2 Bonding Evaluations

Four engineering test specimens were evaluated with through
transmission ultrasonic technique during this reporting period.
These specimens were the four and five layer laminate shear panels
outlined on 603R100-8; detail drawing 603FTBO12,

Only small indications were obtained in inspecting three of
the panels -1-2, -2-1 and -2-2. These indications were resolved
by successive increases in instrument sensitivity to determine
the relative change in the amount of energy required to eliminate
the responses. Thick adhesive areas or other material changes
will attenuate the response only about 5 decibels but a void will
decrease the detected energy by 10 decibels or more. As a result
of applying this procedure the foregoing panels were accepted.

A very large void was detected in inspecting the fourth panel
603FTBO12-1~1 as shown in Figure 101 . As a result of the in-
spection, the panel was disassembled for defect verification and
to reuse the detail parts. Figures 102 and 103 show the
two internal bond lines. Note that, in general, the voids in the
two bond lines correlate with the ultrasonic test.




Figure 99 ULTRASONIC C-SCAN OF 603FTBO0S5#2
BEFORE FATIGUE TESTING

s - - - -
) TIPSR, (W WS . e
mmﬂm’.\‘wﬁ;nuﬂ. ]
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Figure 100 ULTRASONIC C-SCAN OF 603FTBO05#2
" AFTER FATIGUE TESTING
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Figure 101 THROUGH TRANSMISSION C-SCAN RECORDING
OF 603FTBO12-1-1

Figure 102 DISASSEMBLY OF 603FTB012-1-1
SECOND BOND LINE
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Figure 103 DISASSEMBLY OF 603FIBO12-1-1
THIRD BOND LINE

221




p—

The NDI evaluation specimens were fabricated from either
6A1-4V Mill Annealed Titanium or Beta III Titanium. Each speci-
men had three or four induced flaws of 1.0", 3/4", 1/2" and 1/4"
diamcter teflon tape in each bond line,

Two of the specimens, MD3195 and MD3196, were sandwich type
panels of different skin gage thickness., Through transmission
ultrasonic tests showed all but one of the induced flaws (Figures
104/105). Also, numerous othe. areas were recorded same as the
induced flaws.

The other two NDI specimen, MD3197 and MD3198, were turee
and four layer laminate type panels with ,050 and .070 skin gages.
Through transmission tests showed all of the induced flaws but
failed to record all flaws to their known sizes. Several addi-
tional areas were also recorded in Figure 106 , 107 , 108 ,
109 , and 110 .,

Botn types of specimens were evaluated with other techniques;
resonance and a energy surmming ultrasonic technique. Investiga-
ticns with these techniques have not progressed to a point where
{inal technique comparisons are realistic.

These specimens were disassembled for bond line analysis
and NDI/DT correlations.

The two sandwich panels, MD3195 and MD3196, were cut in half
before disassembly. One half was disassembled and the visual
inspection showed well defined induced f£laws with no unintentional
defect area. The through transmission recording and the contact
methods showed wmany additional areas; Figure 104 and 105 .
The reasons for the additional indications have not been determined
at this time.

Figures 106 through 110 , show each bond line &nd the through
transmission recording. Note that, in general, the natural defect
correlates with the NDI results except the recorded sizes were
larger,

3.3.3 EB and GTA Welding Evaluations

It is the intended objective of the welding evaluations to
examine and select ultrasonic NDT approaches for the inspection cf
Beta titanium 6A1-4V and 10 Ni steel weldments. For this purpose
Pulse-Echo-Longitudinal, Pulge-Echo-Shear and Delta techniques will
be and are being investigated.




Figure 104 SaRDWLCH PANEL MD3195, THROUGH TRANSMISSION
RECORDING WITH DISASSEMBLY OF HALF "A"

Figure 105 SANDWICH PANEL MD3196, THROUGH TRANSMISSION
RECORDING WITH DISASSEMBLY OF HALF "A"
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Figure 106 SPECIMEN MD3197, THROUGH TRANSMISSION RECORDING
WITH DISASSEMBLY OF FIRST BOND LINE

Figure 107 SPECIMEN MD3197 THROUGH TRANSMISSION RECORDING
WITH DISASSEMBLY OF SECOND BOND LINE
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Figure 108 SPECIMEN MD3198, THROUGH TRANSMISSION RECORDING
WITH DISASSEMBLY OF FIRST BOND LINE

Figure 109 SPECIMEN MD3198, THROUGH TRANSMISSICH RECORDING :
WITH DISASSEMBLY OF SECOND BOND LINE
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Figure 110 SPECIMEN MD3198, THROUGH TRANSMISSION RECORDING
AND DISASSEMBLY OF BOND LINE #3




3.3.3.1 Titanium 1-4V Beta Welds (Pulse-Echo-Longitudin

The pulse-echo-longitudinal NDT evaluation nas been completed.
Flaw response vs depth profiles have been compiled for transducer
£requencies 5, 10 and 15 MHZ. These respons: curves, plotted
relative to 2/64 flat bottom holes, (FBH), proved invaluable in
tailoring transducer selection and equipment settings. No evalua-
tions were conducted on transducers or frequencies (i.e.: 2MHZ)
where preliminary examination and prior experience indicated
unsatisfactory potential.

Four 6Al-4V, Ti Beta, one-inch thick angle welds and onme,
two inch flat plate specimens were inspected and data recorded.
From these tests it has been established that 15MHZ focused trans-
ducers (SIL and SI1J) produce best ultrasonic penetration and
detection compatible with optimum front surface resolution (FSR).
(One inch weld, .180 in. FSR; 1/2 inch weld, .100 in. FSR)
Pending final evaluation thru specimen sectioning and wmetallographic
examination, 2/64 discontinuity area is a fair estimate of detec-
tion capability for tnis pulse-echo-longitudinal approach. Parti-
cularly significant are the apparent sensitivity to narrow vertical
flaws and the detection of apparent discontinuity areas not shown

in X-rays. In addition, the technique is straightforward using
the UM 721 reflectoscope.

The following gives an estimate of inspection potential,
defining approximate inspectability, accessibility, thickness
and sensitivity factors:

(1) Flat Plate Vertical Weld:

Accessibility: Two side inapection required due to FSR
depth loss.,

Thickness: 2 inch (max) inch depth scanned from each
side.

Ingpectability: 80% effectiveness estimated.
20% uncertainty factor due primarily to
flaw orientation and geometry plus FSR loss.

Sengitivity: 2/64" dia. discontinuity area (est).




these welds also, 15 MHZ transJducers have permitted the best
obtainable responses, Data recorded in the preliminary "best
effort" inspections will be used in conjunction with, and to
corroborate, the evaluation of the forthcoming NDI test specimens.




(2) Tee Weld:

Accegsibility: Inspection possible from either of two
sides; from the flat traverse element or
thru the perpendicular arm.

Ihicknegs: One inch tn and including weld area.

Inspectability: 80% effectiveness estimated.

20% uncercainty factor due to flaw
orientation and geometry (no FSR loss).

Sensitivigy: 2/64" dia. discontinuity area (est).

(3) Angle Weld:

Accessibjility: Any of four side potential approaches.
Thicknegs: One inch to and including weld area.

Ingspectability: 80% effectiveness estimated.
20% uncertainty factor due primarily to
flaw orientation and geometry plus FSR loss.

Sengitivity: 2/64" dia. discontinuity area (est).
\

3.3.3.2 Titanium 6A1-4V Beta Welds (Delta and Shear)

Shear evaluation test will be conducted at the end of this
program, Delta NDI preliminary tests have been initiated.
Negative results have been obtained with available D6 delta
probes (GD QC 127, 148 and 149). Some satisfactory results have
been obtained utilizing SIJ 15 and SIL 5 MHZ transducers, Number
3 eloxed slots have produced satisfactory responses. At the
present time bottom and top elox response ratios are not satis-
factory (6 to 7 optimum). This ig deemed correctable by optimizing
transducer depths and angles o:r by transducer selection. A pri-
mary handicap of this technique that must be overcome is the
higher than usual '"noise' responses from the weld area. This is
the determining factor in minimum area discontinuity detectability.

3.3.3.3 10 Nickel Steel Welds

Only preliminary inspections have been performed with these
type of welds, Evaluation was conducted in 12, 1/2 inch, flat weld
plates. In preparation for further testing work, eloxed slots
and flat bottom hole (FBH) references are being prepared. For
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these welds also, 15 MHZ transducers have peimitted the best
obtainable responses., Data recorded in the preliminary 'best
effort”" inspections will be used in conjunction with, and to
corroborate, the evaluation of the forthcoming NDI test specimens.




3.4 MANUFACTURING DEVELOPMENT

The manufacturing effort during this reporting period was
primarily concerned with manufacturing methods development,
fabrication of engineering test specimens and design support
consultation. Tasks accompiished through March 15, 1973 and
reported in detail in the Phase Ib report (AFFDL-TR-73-70),
are summarized herein and detail results presented for the
period of March 15 ~ June 15, 1973.

3.4.1 Adhesive Bonded Metal Laminated Structure
Process Development

The plan for adhesive bonding manufacturing process develop-
ment has been realigned and rescheduled due to the decision
made at the January 15-18 design review conference. The
adhesive bonded (DTIL) configuration was removed from AMAVS
carry through box competition. The realigned plan is directed
toward identification and solution of the manufacturing
problems associated with adhesive bonding laminated titanium
components using 1/8 inch Titanium alloy. Such structures arte
included in current designs of the FSIL and 'No Box'" Box con-
figuration as bulkheads and ribs.

Manufacture of the bulkheads, and ribs involve adhesive
bonding of relatively large arca laminates up to four ply
thickness (rather than the 10 ply thickness involved in the
DTIL lower plate). Many of the processing problems antici-
pated are the same as those involved in bonding & 10 ply
laminate. All effort towards development of processes for
bonding 10 ply metal laminates has been stopped. The 10 ply
laminates and the laminate data already obtained will be
utilized, wherever possible, in development of the manufac-
turing processes for the 4 ply adhesive bonded elements.

3.4.1.,1 Realigned Test Plan

The new adhesive bonding manufacturing development plan
embodies the following elements:

1. Bonding of a simulated bulkhead, involving manufacture
of lamina details containing machined pockets, cut
outs, and fingers from measured Beta C titanium
1/8 inch ground sheet, The effect of manufacturing
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operations on the curvature and adhesive bonding
characteristics of the details will be determined.

The details will be adhesive bonded into an assembly;
and the assembly evaluated for thickness, warp, and
adhesive bond characteristics., Assessment of chemical
etching of Beta C as a method of metal removal for
manufacturing operautions is included.

2., Continued tool planning and manufacturing engineering
support of the manufacture of adhesive bonded design
verification test panels.

W

Support of the raw material evaluation and adhesive
selection and verification test programs.

4. Initial development work on techniques and methods
for repair of voids in adhesive bonded titanium metal
laminated structure,

3.4,1.2 Program Summary and Status

To develop the manufacturing process for adhesive bonding
bulkheads, a bonding tool (BNFM) was built and plans were made
for processing and adhesive bonding four simulated bulkhead
panels using ''ground" (current) 1/8" Beta C alloy sheet for

2 panels and "rolled and pickled" 1/8 inch Beta C alluy sheet
for 2 panels.

On receipt of the 1/8 inch Beta C alloy sheet in late March,
material for details for one 4 ply simulated bulkhead panel

(40 inch x 36 inch) was sheared and released for measurement
and machining of pockets, cutouts and fingers in preparation
for adhesive bonding. Also, a single lamina (40 inch x 36 inch)
was sheared and sent to chemical etch for etching pockets,

cut outs and fingers for assessment of chemical etching as a
method of metal removal.

All details for completion of the adhesive selection and adhe-
sive evaluation programs have been completed and have been
delivered to Process Control for preparation and testing of
specimens.

Planning for marking and first-cut operations on all incoming

Bata C alloy material has been completed and all Beta C
material has been received, marked, the required first cut
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operations performed, and remnants placed in stock. Thickness
and flatness measurements of three ''rolled and pickled" and
five "ground" sheets of Beta C alloy 1/8 inch sheet (as
received) have been completed. The "rolled and pickled" sheets
show greater thickness variation, wider thickness range, and
possibly slightly less curvature than the ''ground' sheets.

All adhesive bonded design verification test panels (603FTB012
and 603FTBOl4) have been wanufactured and delivered to
engineering test laboratory for test. All fastener tests
(603FTB014) have been completed and three of the four bonded
shear specimens (603FTB0O12) have been completed,

Inictiation of the program for void repair technique develop-
ment is awaiting approval by AMAVS Program Management.
Preliminary plans for task accomplishment have been made.

3.4.1.3 Manufacturing Problem Area - Summation to Date

The data at present indicates that the major road block to
successful adhesive bonding of laminated structures is the
high degree of non-flatness of the metal used for lamination.
Flat metal can easily be bonded without voids. Curved metal
can easily be bonded without voids provided the pressure
applied during cure of the adhesive brings the two metal
surfaces together sufficiently close, without air entrapment,
so that adhesive fills all space between them. Compensation
for metal curvature can be provided by increasing the volume
of adhesive between the plies. This results in thicker
adhesive bondlines in the finished structure and may result
in a void condition due to local lamina curvature mating
conditions,

3.4.1.4 Progrem Data

3.4.1.4.1 Beta C Alloy Sheet Raw Material Evaluation Data

Sheet Thickness - A comparison of the sheet thickness charac-
teristics of current marketed (ground) sheet and special
"rolled and pickled" sheet (significantly lower in cost than
the ground) is given in Table 30 The data shows that the
thickness range of the 'rolled" material is much greater then
the "ground" material, as expected, and indicates that the
grinding operation merely '"knocks off" the sheet surface peaks.

The rolled and pickled material could be used in adhesive
bonding, provided allowance is made for tolerance of thicker




soyoul - SuorsudwWp ITV
GZ-7TER0E IHxx
61-v2E70E IH»

gsYy 62% Ty Ty 96¢ YA 8GY goy sautod “ON

G E0TI%6E L6%6E £0Tx6L 10IX6E G L6XLE g6x6c G 66%LE 00IX(f  UOTsSuUSWId
6200° 6900° 7€00° 8100° 1010° 6000° 7900’ (6100°  "A3Q °P3IS
Sv10° S910° 0L10° GZ10° SL00’ SL00° 0L00° 0900° a3uey
cozt” 811’ A4 811’ cLat” gz’ e rAA N WU
0set” Syel” Ggel’ SoeT” I TAN :TAN oet” 8T’ wnaE X e
s6e1” €Lz’ v0e1” T’ 6121 1748 gLt IAYAN ?23vIdAY
-1 -1 -1 8-1 -1 e-1 rAd | 1-1 3994S

* ONAOYD

¢ @IDIOId ¥ @ATION

q9TI0Id ® QITI08 SA aNnoyd

SSANMOTHL IFTHS HONI-8/T AOTIV WNINVIIL O viad

0¢ 2198l

233




adhesive bondlines, resuiting from space due to possible mating
of peaks on Individual lamina. From the range noted in the Table,
the space between the lamina could be as much as .035" due to
peaks on the surface.

Contour diagrams showing sheet thickness variation within each
measured sheet are included in the Appendix. Pages 276 through 280
show thickness variation within the ground sheets. Pages 281
through 283 show thickness variation within the rolled and

pickled sheets,

Sheet Flatness - Table 31 gives a comparison of the flatness
characteristics of the two types of sheet materials. This data
indicates individual sheet waviness of the two materials 1is
gimilar, i.e., both "ground" and '"rolled and pickled" material
contain sheets having high waviness and sheets which are relatively
flat. However, the '"rolled" sheets may have slightly less
curvature than the ''ground" sheets.

Contour Diagrams showing waviness of the individual sheets are
also included in Appendix. Pages 284 through 288 show waviness
of the ground sheets; pages 289 through 291 show waviness of
the rolled and pickled sheets.

3.4.1.4.2 Engineering Design Verification Test Panel
Manufacture

603FTBO14 - Fastener Comparison Test - To manufacture the
adhesive bonded 603FTBOl4 Assembly, a four ply, 1/8 inch

Beta C alloy titanium laminate was laid up using PL717 adhesive
and cured using the deaeration processing technique. The 16 x 36
inch bonded panel was sawed into sections, approximately 5 inch
x 12 inch, and the test specimens were machined to shape and
drawing dimensions. Load and fastener holes were drilled and
reamed in the finisti machined specimens to prepare them for test.
The deaeration processing technique and specimen machining and
hole preparation were accomplished as previously reported in the
Summary report AFFDL-TR-73-40.

The waviness of each Beta C alloy sheet used in the 4 ply bonded
panel was measured on the '"as received" sheet and after shear
and grit blast to determine degree of contour change caused by
these operations. Thickness of the bonded panel, as well as the
flatness of each surface, was also measured. The bonded panel
thickness varied only .026 inch, from .504 inch minimum to .530
inch maximum, with the ceuler area being thicler az chown in
Figure 111.
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Panel surfaces were relatively flat as shown by the flatness

contour maps in Figure 111 varying .017" on the bag side and
.028" on the tool side,

The ultrasonic '"C" scan on the bonded panel indicated it possibly
contained some small localized voids; however, no voids were
detected during subsequent machining and drilling operationms.

The flatness comparison of the individual sheet lamina, in the

original sheet (Figure 112 ) after shearing (Figure 113 )

and after grit blast /rigure 114 ), indicate these manufacturing .
operations cause no significant change in the general shape of

the metal. However, "cans' or high curvature in the large

sheet are, for the most part, trapped within the plece cut

from the large sheet and the curvature magnitude may be greater

or less than was present in the large sheet. Grit blasting

tends to reduce the magnitude of curvature of the pieces.

603FTBO1l2 - Bonded Shear Web - Except for one assembly, the

four 603FTB012 bonded shear web panels were processed through
detail cutting, machining and adhesive bonding without difficulty.
Cutting and machining of the Beta C titanium alloy sheet was
readily accomplished using current titanium metal working pro-
cedures., Adhesive bonding the net machined details into an
assembly was very successful using make-up rivets to maintain
lamina alignment. This indicates the technique is applicable

for bonding bulkhead, rib and cover panels for the selected

box configuration.

Bonded panel thickness variation and surface flatness variation,
both within a panel and between duplicate panels, was relatively
small as shown in Table 32 . The maximum doubler area thick-
ness variation within a panel was .019 inch and variation between
the panels in the deubler areas was less than .019 inch. Web
area thickness variation, except for one assembly, was approx-
imately the same. The panel thickness measurements reflected

the presence of adhesive bondline thicknesses of up to .020 inch
in the web areas of the panels, except for the one assembly
which indicated adhesive bondline thicknesses of up to .030 inch.

Surface flatness variation was also in the range of .015 to
.025 inch with tool side variations being less than the
variation on the bag side. Contour maps of the bonded panel
surfaces indicate the flatness of one surface is independent
of the other surface, which shows that there was no signiliceant
warpage (rack) in the bonded panels,
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Table 32 603FTB012 ADHESIVE BONDED PANELS

)
) ~3 Configuration -3 Configuru::mh
" 4 Ply Doubler 2 Ply Web 5 Ply Doubler 3 PYy Vox
S/N 524983 526984 524985 | 524986 5‘2-9(;;_‘
Thickness
Doubler Area
Maximum .519 .510 .540 L5432 Ry R
Minimum . 500 497 .525% .52% i L52n
Range .019 013 018 | .o17 !
Veb Ares ‘
Ma ximve 212 .261 w07 | e
Hinismm .259 .252 2390 | 389 1 s
Range 013 009w 017 | 035w |
Flatness (2ag Side) ;
Doubler Area '{
Maximm .529 516 546 | 568 | w48
Minimm .508 .501 529 | .s32 | i
Range on 015 By 016 .
! Web Area l
Mo xlomm 402 .39 485 637 i
Minjoun .2 .80 469 462 L
Renge .020 013 016 L025% Uiz
Flatne 3 (tool side)
Doubler Ares
Haximm .528 .515 . 546 .69 Y
Minimam 514 +501 .533 .534 .5
Renge 014 016 .013 .01% L3 z
z Web Area :
! Maxiom .408 .39 470 | .45 Lyl ? i
Minieum 88 0 460 473 L4
Range .020 30 010 | .012 65 K ;
* Web Center Not Mossured.
#t Penel Pasled Evalusted snd Reprocessed ss B/N 529441 |
‘
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Contour maps, showing the thickness variation and surface con-
tour of each bonded panel, are included in Appendix, pages
292 and 293 show the thickness variation in the -3 panels;
pages 294 through 296 show the thickness variation in the
-1l panels. Surface contour of the -3 panels are shown on

pages 297 and 298; surface contour of the -1 panels are
shown on pages 299 through 301.

As previously indicated, difficulty in bonding one of the -1
configuration assemblies was encountered. The bonded nanel, .
after cure of the adhesive, indicated thick adhesive hond

lines (from measurement of the web area thickness) and NDI

through transmission 'C" scan indicated a large void in the
web area.

The bonded panel (S/N 524986) was disassembled and visual
examination revealed a void approximately 5 inches in diameter
in one adhesive bondline (shown in Figure 102 ) and a void
approximately 3 inches in diameter in the other adhesive bond-
line (shown in Figure 103 ). The void areas were "in series"
in plan view in the panel and '"C" scan results appeared as if
there were one continuous void present.

Analysis of the vold areas showed that the adhesive filled all
volumes up to a depth of .018'" around the large void area and
to a depth of .016" around the small void area, indicating in
each case, the presence of more volumetric space than the
available volume of adhesive could fill.

After removal of the cured adhesive from the individual details,
the flatness of eaci detail, in the as~-bonded position was
measured. Contours of ply #2 and ply #3 and the location of
the 5 inch void between them are shown in Figure 115 . The
measurements indicate, for the 5 inch void area, a convex
canned area in the top (#3) ply matched a concave canned area
in the bottom (#2) ply. This caused an elipsoid shaped space,
with dismeter of approximately 8 inches anddepth of approximately
.100 inch, before pressure for cure was applied. The space was
reduced to a depth of approximstely ,030 inch when bonding
pressure of 85 psi was applied., The adhesive filled all areas
having a depth of .018 inch or less.

Contours of ply #3 and ply #4 and the location of the 3" void
between them are shown in Figure 116 . The measurements
indicate, for the 3" void area, a narrow apex, relatively short
radius (3 to 5 inches) parabaloid wave in #4 ply, which was
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located immediately adjacent to, and slightly overlapping a
concave area of #3 ply. In this case, the 85 psi pressure
closed the gap between the plies to very nearly .016 as shown
by the very irregular shape assumed by the void. In the case
of both the 3 and 5 inch void areas, increasing the bond
pressure and/or increasing the thickness of the basic adhesive
film used, would totally eliminate or at least decrease the
area of the voids.

After measurement of flatniss, the details were reassembled
and stacked (so far as configuration would allow) so as to
nest convex surfaces into convex surfaces. Figure 117 shows
the height of the unbonded 5 ply stack (no adhesive) as
originally bonded (after peeling) and as rebonded. The re-
arrangement of the details resulted in reducing the height
of the unbonded stacked lamina as much as .019 inch at some
points to as much as .125 inch at other points. The rebond
of the assembly was accumplished without difficulty and no
voids were detected ejther by NDI '"C" scan or by thickness
measurements of the panel.

Measurements of the individual 18" x 18" lamina after shear
and after machining to dimensional configuration indicate

that the major waviness exhibited by the sheared and machined
details is inherent in the large sheet from which the details
are cut. Local changes due to manufacturing operations, such
as removal of high or low corners and grit blast of the details
may occur, but the general surface curvature of the finished
detail will be the same as when cut from the sheet. Therefore,
control of the sheet flatness at the mill is dictated in order

-. to insure good quality bonded structures.

3.4.2 Laminated Brazing Process Development
3.4.2.1 Summary

All scheduled process verificetion and manufacturing development
brazed parts are complete. Engineering test parts, including
twelve 603R100-3 shear-stress panels, two 603FTBO13 fastener
comparison test panels, two 603FTB005-3 lower plates, two
603FTB004-13 lugs, two 603FTBOS0 crack arrest demonstration
panels, and two 603R100-3F effect on base metal panels are
complete and have been sent to the engineering test lab for

test and evaluation. Five NDI test panels were also brazed

and sent to the NDI test lab. for evaluation and NDI development
work.
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Brazing parameters, tooling, manufacturing and tooling aids,
detail cleaning procedures, lay~-up procedures and brazing
equipment were developed earlier in the program and are dis-
cussed in detail in Phase lb Summary report AFFDL-TR-73-40,
"Advanced Metallic Air Vehicle Structure Program', Volume 1,
part 2.

3.4,2,2 Fabrication of Manufacturing Development Test Parts

Manufacturing development test parts brazed since the Phase 1b
Summary report include one braze time evaluation test panel
(slow cool), two braze pressure evaluation panels, six surface
finish evaluation panels, two gap demonstration panels, two
void demonstration panels, and one mismatch panel, All manu-
facturing development parts were single braze joint (1/2' x 15"
x 24") titanium structures brazed with Ag-Al-Mn alloy. These

parts are shown in Table 33 with pertinent processing variables.

The manufacturing development parts to evaluate effect of surface
finish were brazed using standard procedure. Braze surfaces in
separate tests were prepared using a face mill and a planer.
Surface finishes evaluated were 63RMS, 125 RMS, and 250 RMS
produced with a face mill and 250 RMS produced on a planer.
X-ray examination showed light and scattered areas of voids,

or braze line irregularities in the 63 and 125 RMS parts and
moderate to heavy irregularities in the 250 RMS parts. The
predominant irregularities in the rough finish parts (250 RMS)
were shown as alternate light and dark areas following the
machine cutter paths.

Two manufacturing development test parts were run to further
evaluate the effect of brazing pressure. Brazing pressure of
five and fifteen inches of mercury vacuum was used in separate
tests. X-ray examination showed scattered areas of light to
moderate voids in the part brazed at five inches vacuum and
lighter scattered voids in the part brazed at fifteen inches
mercury. The part brazed at the higher pressure had a slightly
better overall appearance.

A test to determine the effect of braze alloy gap and overlap
was also run in the part brazed at fifteen inches vecuum. Alloy
was overlapped 1/16-inch along one side of the part and gapped
1/16 iach on thz spposite side. . The gap and overlap ran the
entire 24-inch length of the test part. X-ray examination
showed &8 line of heavy alloy concentration along the overlap
area with adjacent light voids. A thin line void was shown
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along the entire length of the gap; however, about 50% of the
1/16~-inch gap area was filled with alloy.

The void, gap, and mismatch parts were designed with special
built-in discrepancies as illustrated in the sketches in
Figures 118 through 120 . X-ray examination of the void part
clearly shows the built-in voids and scattered, light braze
line voids or irregularities throughout the part. X-rar
examination of the gap part shows the shallow gap (.002" deep)
as a thin dark line running the length of the part and heavier,
wider lines in the area of the 0.005 and 0.020-inch deep gaps.
X-rays of the mismatch part shows scattered light to very heavy
voids and irregularities especially in the areas of maximum
mismatch.

A test was run to determine the effect of a slow cool-down
rate on the properties of a brazed part. This test was run
using a normal heat-up rate but cooling was limited to a rate
of 150°F per hour. This braze cycle is shown in the graph in
Figure 121 . For comparison purposes, a typical braze cycle
is shown in the graph in Figure 122. X-ray examination of
this part showed longitudinal dark areas indicating some
irregularity in the braze line. The part was sent to the
engineering test lab for further testing.

3.4,2.3 Fabrication of Engineering Test Parts

Engineering test parts run since the Phase Ib summary report
include eleven 603R100-3 shear stress panels, one 603FTB005-3
lower plate, one 603FTB004-13 lug and one 603FTB crack arrest
demonstration panel.

All manufacturing development and engineering test parts have
been sent to the engineering test lab for test and evaluation.
Analysis of x-ray examination presented in this section is
limited to very generalized observations and is not intended

to reflect opinion as to braze quality. A final correlation of
data including x-ray, NDI, and engineering mechanical tests will
be made before braze quality is defined.

3.4.3 Weld Development

Both Gas Tungsten Avc (GTA) and Electron Beam (EB) welding are
discussed in this section. GTA welding development is being
accomplished on 10 Ni steel only, as sufficient data exists for
GTA welding 6A1-4V titanium. However, preliminary EB welding
data is being developed for both materials.
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Figure 118 BRAZING TEST PANEL WITH BUILT-IN VOIDS
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3.4.3.1 GTA Welding of 10 Nickel Steel

The manufacturing engineering effort during this reporting
period consisted of engineering design consuitation of welded
concepts, review of available material-process data and the
welding and mechanical property evaluation of GTA welding of
10 Nickel steel.

The "NO BOX" box configuration was designed using 10 Ni steel
which is new to the aerospace industry. The GTA process
parameters were developed on 5/8 inch thick material which
had been machined to 1/2 inch net thickness to remove the
heavy mill scale. The test plates are shown on 603R100-2A.

The equipment used for t-e welding task is shown in Figure
123 . This welding unit has the following features:

1. 400 Ampere 1007 duty cycle output.
2. Pulsed arc capability (1-99 Hz).
' 3. Automatic Voltage Control.
4, Automatic wire feed (0-100 ipm).
5. Transverse cross-sean oscillation.
6. Pivoting 6 foot side beam carriage.
7. In-out ram manipulation (6 foot).
8. Powered vertical height adjustment (6 foot).
The plate weld tooling set up is ghown in Figure 124 . This
is a steel fixture with copper top chill bars and & copper

backup bar. The tooling used for this program provides the
following important functions:

1. Inert gas protection of root side of weld bead.

Z. Copper backup bar to control penetration of root pass.

4. Reduces heat affected zone. b

i
!
J
{
}
{
|
! 3. Copper top chill bars to reduce heat buildup.
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5. Eliminates undercut.
6. Controls warpage.
A sketch of the weld fixture is shown in Figure 125.

The weld parameters were empirically developed, as weld schedules
available from other progrcme were not directly applicable to

the test plates fabricatec Iin this program. Attempts were made
to use existing weld parameters but satisfactory root penetratiocu
could not be achieved. Recommended parameters were discarded

and new weld schedules were established. These schedules werc
developed using the pulsed arc welding mode.

In the pulsed mode of operation, the weld current 1is switched
between two levels of operation. These levels are independenti,
controlled at Level 1 and Level 2. The weld time at Level 1 uaac
Level 2 can also be independently controlled from one to 99 cv: @ =

duration, in steps of one cycle, based on A0 cycles per second. !
The repeated pulsation will produce an output current trace - i
essentially square wave form whose amplitude of current and
width of puise is adjustable. The theoretical olot of current
versus time would iliustrate & square wave saw toothed pattern
However, because of the equipment inductance and reactance ti::
the plot would be somewhat modified. The actual current trac:
is shown in Figure 126.

The weld schedule developed for GTA welding of the 10 Nickel {
| steel is shown in Figure 127. Beginning with the fourth

welded plate, the weld process parameters were frozen and the
only changes made were the number of filler passes used to
compensate for various plate thicknesses. Two additional
passes were used (llth and 12th passes) to attempt to age the
previous weld passes. This was done to assure that, after
the weld reinforcement was removed, all remaining weld metal
had been aged. This reinforcement is shown in Figure 128,

Run in and run out tabs were used to assure that no arc
initiation or termination points remained in the weld. The
weld tab is shown in Figure 129. The run out tabs were
sawed off after the weld was completed.

The test plates identified in the Engineering Drawing 603R100-2C

have been welded. A total of fourteen -1 assemblies have been

completed and will be used for the tension, fatigue and fatigue .
crack growth gpecimens. The two -3 fracture toughness test
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Figure 125 SECTION OF GTA WELD FIXTURE
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WELDING SCHEDULE FOR MECHANIZED FUSION WELDING

PROGRAM Anld4 S DATE -4-73

MATERIAL /O A/ S/&EL THICKNESS & 500 /. CONDITION AUS7, oAty & AGE
EQUIPMENT NO. 36 %// _PART NO. 603 R/00-2

PREHEAT TEMP. A7 INTERPASS TEMP, /50-~/80 %F
PRECLEANING AACHINED EOGE, WIRE BRYSH , AIEK - WirrED

NOZZLE SIZE AWD./0 TUNGSTEN: Type 2%7# Diameter O./25 /W

TUNGSTEN: Extension &.500 /A. Shape /5 °ANGLE

FILLER WIRE: Type /0 N/ Diameter O.O0d5 .

TORCH GAS: Type #£4 Flow 90 cfh; BACKUP GAS: Type #€ Flow /5 cfh

Weld Pass No. 1 2 3 4 5 6 7 8 9 10 11 12
Voltage 13 13 13 13 13 13 13 13 13 13.5 13.5 13.5
Weld current (amperage)

Level 1 225 160 160 160 160 160 160 160 160 160 160 120

Level 2 180 200 200 200 20Q 200 200 200 200 200 200 160
Number of cycles

Level 1 10 15 15 15 15 15 15 15 15 15 15 15

level 2 S 5 5 S5 5 S 5 5 5 5 5 S
Wire speed (ipm) 32 32 32 32 32 32 32 32 32 32 32 16
Weld speced ipm) 2 4 4 4 4 4 4 4 4 4 4 4

Figure 127 GTA WELDING SCHEDULE FOR 10 NICKEL STEEL
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plates have also been welded. Each of the welded plates have
been x-rayed, magnetic particle, and ultrasonically inspected,

The test plates were post weld aged at 950°F for (4) four hours
and air cooled as specified by Engineering. The stability of

a warped plate was observed before and after the post weld age
cycle. No movement or relaxatation of stresses could be de-
tected,

The plates have been delivered to the Engineering Test Laboratory
for specimen removal and testing. '

The transverse weld shrinkage was measured at both the beginning
and termination end of the plate. The average shrinkage was
.021 and .025 inches respectively.

Various design concepts were reviewed for producibility for the
NBB concept. Typical representative sections were chosen to
develop the manufacturing data necessary to GTA weld the
proposed NBB designs,

3.4.3.2 Electron Beam Welding Development

3.4.3.2,1 EB Welding of 6AL-4V Titanium - Phase IB Summary
Report (AFFDL-TR-73+40) describes in detail the completed
program of EB welding of Beta processed 6AL-4V titanium, A
brief summary of this information ie as follows:

EB welded joints on 5/8, 1 and 2 inch thick 6AL-4V titanium
were made, inspected and sent to the Engineering Test Laboratory
for mechanical property testing.

Representative areas of the various weldment designs under
consideration were analyzed for producibility. Two typical
structural sections were chosen for producibility demonstration.
The first was a corner joint with dissimilar thickness. The
second element bujlt was a wide angle flange joint to eliminate
extensive machine hog oute. Five assemblies of each design
were produced, In addition to the weld development efforts,
the resulting joints were provided for a NDI development
program. Intentional flaws were made in the weld joints to
similulate defects that could occur in productim such as:

1. Axrc outs

— i aa




2, Lack of fusionm,
) 3. Porosity.
; 4., Missed root.
} Conclusions:
1. Beta processed 6AL-4V titanium can be welded by the
EB process, defect free, up to 2 inch thickness.
2, Reproducibility can be assured by beam -current
monitoring.
3. Transverse weld shrinkage can be predicted on all
EB welded titanium joints.
4. Cormer welds of dissimilar thickness can be made
by using run out tabs and a fitted backup block.
5. Multi-pass welds on 6AL-4V titanium can be made with
up to 2 inch thickness material.
6. Use of a filler wire increases the gap allowance
from + 005" to * 0.020 inches.
7. A machine clean up reinforcement of 0.,030" on each

side of the weld joint should be provided on all
EB welds.

5.4.3.2.2 Electron Beam Welding of 10 Nickel Steel - Since
10 Ni steel (Hy 180} is a candidate material for building

the AMAVS, several EB weldments on this steel are under consid-
eration

Very little information {s available from industry regarding
E3 welding of 10 Nickel. A limited program was outiined to
csteblish "in-house'" capability as well as establishimg design
suidelines.

Representative joint Jasigns will be welded to establish weld
parameters and to provide engineering a limited number of
wechanical property test welds.

The remaining task to be accomplished is:




1. Develop weld parameters for ,37,.090 and 2.10 inch
thick 10 Ni. steel,

2, Weld two producibility demonstration structural
"H" sections that will include the major EB welded
joints now under consideration for the NBB design.

3.4.4 Machining

A basic machining evaluation has been initiated on HY 180
(10 Ni.) stcel. The inconsistant machining results obtained
thus far on test specimen preparation, using band sawing,
face milling, profile milling, and drilling operations, has
established a need for specific muchining guidelines.

Machining tests are in progress to determine metal removal
characteristics as related to producibility. Test are based
on the use of stock cutting tools with variation in speeds
and feeds for establishing producibility comparison to Déac
steel (where machining data and cost have been established).

Band sawing tests have been conducted using high speed steel
(Simond, weld edge) band stock on a conventional Do-All saw.
A band speed of 55 surface feet/minute (SFII) has been estab-
lished as adequate for saw band life. An average sawing rate
of .5 square inches/minute was achieved on one inch plate
stock without the aid of coolant. The sawing rate of HY 180
steel is 50% of annealed Db6ac steel.

Boring and turning tests on HY 180 steel using carbide inserts
(TPG-322A), indicates that the metal removal rate is 307
greater than for heat treated D6ac (220-240 KSI). 100 SFM

for roughing operations and 150 SFM for finishing cuts are
adequate for HY180. Feeds of .0075 inches per revolution
(I.P.R.) for roughing and .005 I.P.R, for finishing offers the
best selection for initial machining operationms.

Future machining tests will be conducted for pocket milling,
face milling and fastener hole preparation. Special emphassis

is being placed on testing of tool geometry variation that

may be more efficient for cutting HY180. A machining comparison
test is planned for HY180 (solution treated) versus HY180
(solution treated and aged) to determine material procurement
cost advantages relative to machining cost impact of the two
heat treat conditions.




3.4.5 Manufacturing Engineering Design Support

On board design studies were supported by manufacturing engineers
in selecting the most efficient design concepts based on cost and
reliability of the manufacturing procegss. Input to these studies
was in the form of preliminary costing analysis of components and
agssemblies and subsequent ratings for the manufacturability of
the designs. These inputs were utilized in the final evaluation
of the three design concepits under study in Phase Ib of this
program as previously discussed in AFFDL-TR-73-40.

3.4.5.1 Preliminary Cost Egstimates for Basic Manufacturing
Trade Studies

Cost estimates prepared at the on-board design level were made
by manufacturing engineers with assists as deemed necessary
from other manufacturing specialists and Material and Industrial
Engineering estimators. These preliminary estimates were
limited to basic fabrication and assembly costs without benefit
of estimated scrap rate, quality control costs, manufacturing
and tooling follow-up efforts, and other miscellaneous charges.
The major items of cost which were considered are materials,
manufacturing labor costs, special sub-contract fabrication
charges, and tooling fabrication and material costs. These
estimates do not reflect the total cost of details or components
but were used for comparisons of part costs in preliminary
manufacturing trade studies of proposed designs.

The following component designs for the WCTS configurations were
evaluated. Cost estimates were prepared on each design for
production units of 1, 6, and 200. Ratings of designs were
based on production quantities of 200 ship sets.

A 1list of drawings, with references to other report documents
or sections of this report is shown for the readers assistance
in locating these drawings.

Drawing No, Configuration Reference Location
603R149 NBB AFFDL-TR-73-40 Vol., 11
603R170"B" FSRL AFFDL-TR-73-40 Vol. I1
603R171 FSRL AFFDL-TR-73-40 Vol. II
603R172 NBB AFFDL-TR-73-40 Vol. II
603R173 NBB AFFDL-TR-73-40 Vol, II
603R195 NBB AFFDL-TR-73-40 Vol. II
603R196 NBB AFFDL-TR=73-40 Vol. II 1
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Rrawing No. Conflguration Reference Location

603R197 NBB AFFDL-TR-73-40 Vol. 11
603R198 NBB AFFDL-TR-7 =40 Vol. 11
603R214 FSRL Section 3.1.1
603R215 FSRL Section 3.1.1
503R228 FSRL Section 3.1.1

3.4.5.1.1 Upper Plate Asserdly FSRL Drawing No. 603R170"B"
This drawing defined two assemblies designated as 603R170-1
and 603R170-3,

The 603R170-1 assembly was designated as a titanium assembly. 3
The lugs, cover plates, and honeycomb panel covers were all
6-6-2 and 6-4 titanium except the aluminum honeycomb core.

The 603R170-3 assembly was designated as a t.tanium and ]
aluminum assembly. All machined and bondcd panels of titanium

inboard of Xp 84 rib were replaced by bonded honeycomb panels 1
of 7050 aluminum. This design showed a significant reduction

in cost over 603R170-1 and eventually became the winning upper

plate design for the FSRL configuration at the end of Phase Ib.

3.4.5.1.2 Closure Rib Xp 119.0 (NBB) - Three designs were
evaluated as improved versions over the orizinal preliminary
design designated as Drawing No. 603R1l1l4.

drawing No. 603R149 represented two design versions of fabrication.

One is considered as a monolithic struvcture to be machined from (
10 Ni steel plate. The other version is an adhesive bonded

assembly of two machined plates bonded back-to-back at the web

centerline. Studies of these two finished components indicated

a slight cost increase in the bonded assembly due to bonding,

tooling and factory operations not required for the monolithic

part.

Drawing No. 603R197 is an electron beam (EB) welded assembly
of 10 Ni steel machined after welding to finished aimensions.
Accessibility to the weld joints with the EB welder head and
wire feeding system presents a major problem. Estimated costs
of this design is close to 603R198 design.

Drawing No. 603R198 is an EB welded assembly of 10 Ni steel
plates, machined after welding. This design involves less
production risk than 603R197. Cost difference should not be
a major factor until welding tests are performed to determine
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reliability of each design. Until tests are run 603R198 design

would be preferred for manufacturing ease and cost over other |
mentioned candidates. The basic cost savings in this design

is in reduced material requirements and machining time due to

the rough configuration produced by the E.B. welding of re-

latively light plate stock.

3.4.5.1.3 Main Landing Gear Drag Brace Fitting Drawing
No. 6C3R171 (NBB) - This design was evaluated against Drawimg

No. 603R142 which consisted of two 6Al-4V titanium machined
forgings welded together. The basic component of the new
design is the 603R171~7/8 aluminum fitting, machined from a
proposed hand forging of 7050 aluminum alloy. A considerable f
cost reduction was obtained by this design.

3.4.5.1.4 Bulkhead Yp 992 (NBB) - Two improved designs were
evaluated against two existing designs, 603R047 and 603R109.
The new designs were 603R173 and 603R195. The early designs
were of a plate and stringer type concept of 10 Ni steel.

Drawing No. 603R173 introduced an adhesive bonded 7050 aluminum
honeycomb panel 144 inches long, extending from Yp 72.00 left to

Yp 72.00 right between the upper and lower bulkhead caps. The panel
replaced the early plate stringer concept and made other im-
provements in the lug joints. This new design provided
manufacturing break joints, bolted, at upper and lower caps,
approximately at stations Yy 48 upper: and Yp 52 lower. This

design produced a significart cost reduction compared to early
designs and was later altered under drawing No. 603R195 to <
provide for a 7050 aluminum beam under the ay 0.00 cap to

replace the 10 Ni steel beam and farther reduce the total

bulkhead assembly cost.

Drawing No. 603R195 made changes in the pivot lug attaching
method and eliminated the bolted joints near stations Yp 48
and Yp 52 in favor of welded joints near stations Yp 84 upper
and Yp 38.70 lower. It also used the same 7050 aluminum
honeycomb psnel and beam under Zp 0.00 cap as described under
Drawing No. 603R173. These changes farther reduced costs and
made this design the selected one.

3.4.5.1.5 Bulkhead Yp932 (NBB) - Designs for this bulkhead

followed and were typical to those made for Bulkhead Yp992.
Early designs 603R046 and 603R113 were similar in concept to
603R047 and 603R109 respectively.




/

Drawing No. 603R172 used an adhesive bonded 7050 aluminum
honeycomb panel to replace early design webs and stiffeners

of 10 Ni steel and retained mechanical splice joints, on upper
and lower caps.

Drawing No. 603R196 retained the 7050 aluminum honeycomb panel,
replaced mechanical splice joints with weld joints and used a
7050 aluminum beam below Zp 0.00 station. This final design
made a significant contribution to the cost reduction position.

3.4.5.1.6 Lower Plate (FSIl) - Three candidate design concepts
were studied as improvements over the lower plate assembly
design established at the end of Phase 1Ib, The Phase Ib
assembly consisted of:

603R174 Plate Assembly
603R147 Pivot Lug Assembly
603R140 Longeron Fittings

Drawing No. 603R214 deviated from the basic ''removable lug"
concept by incorporating an ''integral lug' with the inboard
assembly section and providing forward and aft longeron attach
surfaces as an integral part to mske a hrezed laminated titanium
assembly. This design eliminated the integral flanges attaching
the end closure rib and the forward and aft bulkheads and pro-
vided attach angles that are Taper-Lok bolted to the brazed

plate assembly. The design reduced the total number of fasteners
required in the longeron area by one row. It retained the basic
splice pattern at the airplane centerline.

Revision "A" to 603R214 made provisions to have identical
cutouts in the upper and lower plates of the assembly, allowing
left and right hand assemblies to be made with common tooling.
Subsequent machine operations to the brazed assembly makes the
basic assemblies into right and left hand components.

Revision "B" to 603R214 farther improved the design by reducing
the forward and aft longeron attaching surfaces and in turn
reducing the stock plate sizes and machining costs. Cutout

sizes and shapes vwere likewise redesigned to improve machining
costs. The upper attach angles in area of the outboard

closure rib were removed and replaced with a subsequent

longeron design, Drawing No. 603R238. Major improvements for
manufacturing for this design was elimination of the brazed

plank concept,in favor of the brazed laminated concent, due

to the requirement for close tolerance machining of plank details.




Drawing No. 603R215 consists of two brazed laminates of 6Al-4V
titanium assembled with Taper-Lok bolts in the area of the
outboard longeron. The splice joints are male and female and
the bolt pattern attaches an angle detail which locates the
outboard closure rib. The inboard assembly is a three plate
brazed titanium laminate with angle details, for joining forward
and aft bulkheads, bolted to the laminate.

Revision "A" to Drawing No. 603R215 made provisions for adding
the aft attaching surface to the brazed lug laminate and re-
duced the same attach area previously shown on the inboard
assembly. These specific changes are questionable as to the
effect on manufacturing and assembly. Some reduction in the
total material requirements was obtained by the change.

The basic advantage of the 603R215 design is that it allows
the use of smaller detail plates at fabrication, including
brazing.

One disadvantage of the design concept is in the joint fit.
Critical tolerances are necessary and problems associated
with obtaining these tolerances are great, especially in the
"pocketed" area of the longeron aft attaching lug.

An area of added machining and tooling costs found in the
603R215 design,as compared to the 603R214 design, is in the
cutouts required in the upper and lower brazed plates inboard
of the longeron. These cutouts are smaller and greater in
number on each plate of the 603R215 assembly. This condition
produces higher machining time due to extra inches oi finishing
cuts. Upper and lower cutout patterns are nol common &s
mentioned for consideration under 603R214 evaluation. More
tooling for detail fabrication and brazing operations will be
required,

Analysis of advantages and disadvantages of Drawings Nos.
603R214 and 603R215 produced a requirement for a hybrid
concept designated as 603X215 assembly. Without benefit of
an engineering drawing, estimates were made of total manu-
facturing costs to produce the lower plate assembly. It

would be composed of two brazed laminate assemblies as shown
in Drawing No. 603R215 with the inboard assembly incorporating
the advantages of the upper and lower plate cutouts as shown
on Drawing No. 604R214,
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Results of preliminary studies on 603R214, 603R215, and 603X215
concepts showed the 603R214 concept to be lowest in cost. The
reduction in cost was due to elimination of splice joint at the
longeron, ability to make right hand and left hand assemblies
with the same tooling, and reduced machining of basic detail
parts. The 603X215 concept was next in cost.

3.4.5.2 Configuration Rating System for Manufacturing

The basis for selecting concepts at the end of Phase Ib was

the Merit Rating System as established during Phase la pre-
liminary design. Details of the total system has been discussed
in previous report AFFDL-TR-73-40 volume II.

The weighing factors which related to manufacturing processes
and their maximum score as related to the total score are:

Manufacturing cost 187% Maximum
Technology advancement

for manufacturing 9% Maximum
Manufacturability 2% Maximum

The rational for evaluating and rating design concepts is
discussed as follows.

3.4.5.2.1 Manufacturing Costs - Ratings for manufacturing
costs were made on the basis of 200 production units. Costs
for details and assemblies were estimated for each of the
three candidate configurations and accumulated for comparison
of individual concept costs.

Items which made up the total cost package are:

Material - Estimates were made on requirements for raw stock
sizes, plus an attrition factor. Dollar values were based on
factors of stock size and projected market price for the
ordering time period. Estimates for forgings and extrusions
were obtained from potential vendors on basic items with
others being estimated using past experience as a basis.
Tooling costs for forgings and extrusions were carried under
separate tooling costs and prorated over the 200 production
units.

Basic Detail Fabrication - A preliminary manufacturing analysis
was made of each detail part., Estimates were made for the cost
of fabricatiug a single unit. Learning curve factors, based on
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judgement and history, were applied to the single unit estimate

to obtain total costs for 200 production units. The basic

tooling, plus tooling as required for production rates of

5 units per month, was estimated in the preliminary manufacturing
analysis and accumulated under tooling costs. The Preliminary

Cost Estimate form (Figure 130 ) was used to itemize manufacturing
costs.

Assembly and Joining - Preliminary estimates were made for
fabrication of one unit and tooling as required. Total estimates
followed the same procedure as described under basic detail
fabrication.

Tooling - All tool manufacturing estimates accumulated from
basic detail and assembly fabrication studies were carried
under a separate item of cost. A factor for maintenance of
tooling was added based on past history.

Rates for Costing - Estimated costs for labor hours of part
fabrication and tool manufacture were based on an estimated
direct hourly labor rate plus an estimated overhead rate.

Estimates of Total Cost - Individual costs of material,
fabrication, and tooling for the projected 200 units were 4
combined to obtain total cost.

of this program has been advancements in manufacturing technology.
However, these advancements could be utilized only if they en-
hanced the status of other disciplines such as weight, cost,
reliability, etc.

3.4.5.2.2 Meg.ufacturing Technology Advancement - A prime goal {

An early decision was made that each of the three candidate
concepts met the criteria for technology advancement. For this
+ reason the ratings for each concept were considered equal and

a full score was given each.

- 3.4.5.2.3 Manufacturability - Rating of concepts for this
: catagory is based on parformance level and reliability of the
manufacturing processes employed in the fabrication of each
concept. Since manufacturing cost is rated in a separate
category, no consideration was given to that item during this
} evaluation.

! To best analyze the total value of each concept, a brecakdown J
of manufacturing phases was utilized. These phases and their
respective ratings are:
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Basic detail manufacturing 307% Maximum
Secondary manufacturing (joining) 3072 Maximum

Sub-assembly 20% Maximum
Final assembly 207 Maximum
Total 100%

The final rating of the three candidate designs and a break-
down of ratings by manufacturing phases are shown below. The
numbers are related to the maximum grade of 3.0 for manu-
facturability as established in the basic merit rating system.

Manufacturability Ratiungs

Manufacturing Configuration

Phase NBB FSIL DTIL
Basic lifg. +539 .514 .557
Secondary Mfg. .810 .687 .888
Sub-Assy. .384 .539 .560
Final Assy. .341 .252 .252
Total Rating 2.074 1.992 2.257
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APPENDIX

PHYSICAL CHARACTERISTICS OF RAW MATERIAL

AND DESIGN VERIFICATION TEST SPECIMENS
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THICKNESS

. |

PIN
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THICKNESS
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THICKNESS
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